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SOLVABILITY RELATIONS IN GROUPOIDS
ARPAD SZAZ

ABSTRACT. If X is a groupoid, then for any z, y € X we define
P(z,y)={ueX: ur=y} and U(z,y)={veEX: zv=y},
and moreover ¢ (z) = ® (z, z) and ¥ (z) = ¥ (z, z).

Here, ¢, and @, ¥ will be considered as relations on X and X? to
X, respectively. And, they will be called the main solvability relations in X.
Note that, more precisely, the groupoid X should also be indicated in the
above notations. For instance, instead of ® we should write ®x .

To feel the importance of these relations, note that if u € ¢ (z) and
v € U(x,u), then ux = x and zv = u. Therefore, u is a left unit for
x and v is a right inverse of z relative to w. Thus, the above solvability
relations can be used to classify and investigate groupoids.

For instance, the groupoid X may be called prefunctional if the restrictions
of the relations ¢ and % to the set

Xo — { X\ {0} if X hasazero O,
X if X does not have a zero

are functions of Xo to X. That is, the sets ¢ (z) and v (x) are singletons
for all x € Xg.

If X is a prefunctional groupoid, then by identifying singletons with their
elements we may also define

o(z)=2(z, ¢ (z)) and p(x) =" (z, ¢ (x))
for all z € Xo.

Moreover, we may call the prefunctional groupoid X to be semifunctional
if the relations o and p are also functions of X to X. Surprisingly, if X is
a prefunctional semigroup, then ¢ = p, and thus p is not needed.

If X is a semifunctional semigroup with zero 0, then X may be called
a Brand-Clifford semigroup and X may be called a Brand partial groupoid.
Thus, the difficult definitions and properties of Brandt partial groupoids can
be briefly expressed in terms of the solvability relations.

The principal task here is to determine the solvability relations in a given
semigroup X. Unfortunately, this can be done only in some very particular
cases. Of course, if X is a group, then the solvability relations in X can be
easily computed, and they are functions.

In this respect it is also worth mentioning that a groupoid X may be called
a quasi-group if it is functional in the sense that the relations & and ¥ are
functions of X2 to X. Moreover, the famous Green relations £ and R can
also be nicely defined in terms of the relations ® and ¥ considered in the
groupoid obtained from X by adjoining a unit if necessary.
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INTRODUCTION

If X is a groupoid, then for any z, y € X we define
P(z,y)={ueX: ur=y} and U(z,y)={veX: zv=y},
and moreover
p(x)=®(z, x) and U (z) =Y (z, x).

Here, ¢, and ®, ¥ will be considered as relations on X and X2 to X,
respectively. And, they will be called the main solvability relations in X. Note that,
more precisely, the groupoid X should also be indicated in the above notations.
For instance, instead of ® we should write ®y .

To feel the importance of these relations, note that if u € ¢(z) and
v € U(z,u), then uzr = =z and zv = uw. Therefore, u is a left unit for =
and v is a right inverse of «x relative to w. Thus, the above solvability relations
can be used to classify and investigate groupoids.

For instance, the groupoid X may be naturally called prefunctional if the
restrictions of the relations ¢ and % to the set

x _{ X\ {0} if X hasazero 0;
v X if X does not have a zero
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are functions of Xy to X. That is, the sets ¢ (2) and ¢ (z) are singletons for
all z € Xy. If the groupoid X has a zero 0, then ¢(0) = X and ¢ (0) = X.
Therefore, even the relations ¢ and v cannot, in general, be functions.

However, if X is a prefunctional groupoid, then by identifying singletons with
their elements we may also naturally define

o(x) =2 (x,¢(x)) and p(x) =0 (z, ¢(z))

for all x € Xy. Moreover, we may naturally call the prefunctional groupoid X
to be semifunctional if the relations ¢ and p are also functions of Xy to X.
Surprisingly, if X is a prefunctional semigroup, then ¢ = p, and thus p is not
needed.

If X is a semifunctional semigroup with zero 0, then X may be naturally called
a Brand-Clifford semigroup [12, 13] and Xy may be naturally called a Brand partial
groupoid [3, 13]. Thus, the difficult definitions and properties of Brandt partial
groupoids can be briefly expressed in terms of the solvability relations.

In this respect, it is also worth mentioning that if X is a groupoid, then
following the ideas of Preston [45] and Clifford [11] we may also naturally define

a@)={uecep(): V(z,u)#0}
and

f@) = {vev@: (020}
for all z € X, and

Yw={zeX: uecp@nv()}
and
G(u):{xE’y(u): @(x,u)mq/(x7u)7ém}

for all u € X.

Namely, for instance, if X is a semigroup, then it can be shown that 6(u) # 0
if and only if w is idempotent if and only if 6 (u) is a subgroup of X with unit «.
Moreover, 6 (u)N6 (v) # @ implies v = v. Therefore, the semigroup may be called
a Clifford semigroup [11] if the relation 6 is onto X.

The principal task here is to determine the solvability relations in a given semi-
group X . Unfortunately, this can be done only in some very particular cases. Of
course, if X is a group, then the solvability relations in X can be easily computed,
and they are functions.

In this respect it is also worth mentioning that a groupoid X may be called a
quasi-group if it is functional in the sense that the relations & and ¥ are functions
of X2 to X. Moreover, the famous Green relations £ and R [21, 13] can also be
nicely defined in terms of the solvability relations ® and W.

For instance, if X is a groupoid, then by [24, Lemmal.2], for any z, y € X,
we may naturally write

xLy <=  Ox:(z,y)#0 and PIx:(y,z)#0,

where X* = X if X has a unit and X* = XU{1}, with an appropriate extension
of the original multiplication, if X does not have a unit.



