UNIVERSITY OF DEBRECEN

Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces

Muwafaq Salih and Árpád Száz

INSTITUTE OF MATHEMATICS

2019

GENERALIZATIONS OF SOME ORDINARY AND EXTREME CONNECTEDNESS PROPERTIES OF TOPOLOGICAL SPACES TO RELATOR SPACES

MUWAFAQ SALIH AND ÁRPÁD SZÁZ

Dedicated to the memory of János Kurdics who was the first to note that connectedness is a particular case of well-chainedness

ABSTRACT. Motivated by some ordinary and extreme connectedness properties of topologies, we introduce several reasonable connectedness properties of relators (families of relations). Moreover, we establish some immediate connections among these properties.

More concretely, we investigate relationships among various minimalness (well-chainedness), connectedness, hyper- and ultra-connectedness, door, superset, submaximality and resolvability properties.

Since most generalized topologies and all proper stacks can be derived from preorder relators, the results obtained greatly extends some former results on topologies. Moreover, they are also closely related to some former results on well-chained and connected uniformities.

Contents

1.	Connectedness properties of topologies	2
2.	A few basic facts on relations	3
3.	A few basic facts on ordered sets	5
4.	A few basic facts on relators	ϵ
5.	The induced proximal closure and interior	8
6.	The induced topological closure and interior	S
7.	The induced fat and dense sets	10
8.	The induced open and closed sets	12
9.	Further structures derived from relators	14
10.	Regular structures for relators	17
11.	Further theorems on regular structures	18
12.	Important closure operations for relators	20
13.	Further results on the operations \wedge and \triangle	22
14.	The importance of the operations ∞ and ∂	24
15.	Further theorems on the operations ∞ and ∂	26
16.	Reflexive and topological relators	28
17.	Proximal relators	30
18.	Some basic facts on the elementwise unions of relators	32

 $^{2010\ \}textit{Mathematics Subject Classification.}\ 54\text{E}15,\ 54\text{D}05,\ 54\text{G}15,\ 54\text{G}20.$

Key words and phrases. Generalized uniformities, connectedness properties.

The work of the second author has been partially supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651.

19.	Further results on the elementwise unions of relators	34
20.	Quasi-proximally and quasi-topologically minimal relators	36
21.	The main characterizations of quasi-minimal relators	38
22.	Further characterizations of quasi-minimal relators	39
23.	Paratopologically minimal relators	41
24.	Further characterizations of paratopologically minimal relators	42
25.	Quasi-proximally and quasi-topologically connected relators	44
26.	The main characterizations of quasi-connected relators	46
27.	Further characterizations of quasi-connected relators	47
28.	Relationships between quasi-connectedness and mild continuity	49
29.	Quasi-hyperconnected relators	51
30.	Quasi-ultraconnected relators	53
31.	Hyperconnected relators	54
32.	Further characterizations of hyperconnected relators	56
33.	Some particular theorems on minimal and connected relators	58
34.	Quasi-door, quasi-superset and quasi-submaximal relators	61
35.	Relationships among door, superset and submaximality properties	63
36.	Resolvable and irresolvable relators	65
37.	An illustrating example	66
38.	Another illustrating example	68
39.	Two further illustrating examples	71
Refe	erences	74

1. Connectedness properties of topologies

By Thron [212, p. 18], topological spaces were first suggested by Tietze [213] and Alexandroff [4]. They were later standardized by Bourbaki [18], Kelley [81] and Engelking [53]. (For some historical facts, see also Folland [57].)

If \mathcal{T} is a family of subsets of a set X such that \mathcal{T} is closed under finite intersections and arbitrary unions, then the family \mathcal{T} is called a *topology* on X, and the ordered pair $X(\mathcal{T}) = (X, \mathcal{T})$ is called a *topological space*.

The members of \mathcal{T} are called the *open subsets* of X. While, the members of $\mathcal{F} = \mathcal{T}^c = \{A^c \subseteq X : A \in \mathcal{T}\}$ are called the *closed subsets* of X. And, the members of $\mathcal{T} \cap \mathcal{F}$ are called the *clopen subsets* of X.

Note that $\emptyset \subseteq \mathcal{T}$ such that $\emptyset = \bigcup \emptyset$ and $X = \bigcap \emptyset$. Therefore, we necessarily have $\{\emptyset, X\} \subseteq \mathcal{T}$, and thus also $\{\emptyset, X\} \subseteq \mathcal{F}$. Consequently, $\{\emptyset, X\} \subseteq \mathcal{T} \cap \mathcal{F}$ is always true. That is, \emptyset and X are always clopen subsets of X.

According to Száz [166, 169, 178], the members of the family

$$\mathcal{E} = \{ A \subseteq X : \exists U \in \mathcal{T} \setminus \{\emptyset\} : U \subseteq A \}$$

may be naturally called the fat subsets of X.

Hence, it is clear that $\mathcal{E} \neq \emptyset$ if and only if $X \neq \emptyset$. Moreover, \mathcal{E} is a proper stack on X in the sense that $\emptyset \notin \mathcal{E}$ and \mathcal{E} is ascending in X. That is, if $A \in \mathcal{E}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{E}$ also holds.