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Dedicated to the memory of Janos Kurdics
who was the first to note that connectedness is a particular case of well-chainedness

ABSTRACT. Motivated by some ordinary and extreme connectedness proper-
ties of topologies, we introduce several reasonable connectedness properties
of relators (families of relations). Moreover, we establish some immediate
connections among these properties.

More concretely, we investigate relationships among various minimalness
(well-chainedness), connectedness, hyper- and ultra-connectedness, door,
superset, submaximality and resolvability properties.

Since most generalized topologies and all proper stacks can be derived from
preorder relators, the results obtained greatly extends some former results on
topologies. Moreover, they are also closely related to some former results on
well-chained and connected uniformities.
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1. CONNECTEDNESS PROPERTIES OF TOPOLOGIES

By Thron [212, p. 18], topological spaces were first suggested by Tietze [213]
and Alexandroff [4]. They were later standardized by Bourbaki [18], Kelley [81]
and Engelking [53]. (For some historical facts, see also Folland [57].)

If 7 is a family of subsets of a set X such that 7 is closed under finite intersec-
tions and arbitrary unions, then the family 7 is called a topology on X, and the
ordered pair X (7) = (X, T) is called a topological space.

The members of T are called the open subsets of X. While, the members of
F=T¢={A°C X : A€ T} are called the closed subsets of X. And, the
members of 7 N F are called the clopen subsets of X.

Note that § C 7 such that # =|J 0 and X =) 0. Therefore, we necessarily
have {f, X } C T, and thus also {@, X } C F. Consequently, {0, X } CTNF
is always true. That is, ) and X are always clopen subsets of X.

According to Széz [166, 169, 178], the members of the family

E={ACX: 3 UcT\{0}: UCA}

may be naturally called the fat subsets of X.

Hence, it is clear that & # () if and only if X # (. Moreover, £ is a proper
stack on X in the sense that 0 ¢ £ and £ is ascending in X. That is, if A€ &
and A C BC X, then B € £ also holds.



