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AN ANSWER TO THE QUESTION

”WHAT IS THE ESSENTIAL DIFFERENCE BETWEEN

ALGEBRA AND TOPOLOGY?”

OF SHUKUR AL-AEASHI

ÁRPÁD SZÁZ

In the present form, this is not a good question. Namely, topology, in a narrower
sense, is the extensive theory of topological spaces X (T ) = (X, T ) consisting of
a set X and a family T of subsets of X which is closed under finite intersections
and arbitrary unions.

In my opinion, the use of the concept of open sets as a starting point, is the
greatest mistake in mathematics. It was first suggested by Tietze (1923), and later
standardized by Bourbaki (1940), Kelley (1955) and Engelking (1977).

Hausdorff (1914), Kuratowski (1922), Weil (1937), Tukey (1940), Efremovič
(1952), Császár (1960), Doičinov (1964) and several further mathematicians
offered more convenient tools such as neighbourhoods, closures, uniformities,
covers, proximities and convergences for instance.

Neighbourhoods of points or sets, and convergence of one net of points or sets to
another are very powerful tools. However, having in mind Weil’s uniformities, we
prefer to use families of relations and corelations, and several natural closure and
projection operations on them.

A subset R of a product set X×Y is called a relation on X to Y . And, a
family R of relations on X to Y is called a relator on X to Y . They have been
studied in several papers by the present author and his students.

While, a function U on one power set P(X) to another P(Y ) is called a
corelation on X to Y . And, a family U of corelations on X to Y is called a
corelator on X to Y . Thus, complement and closure operations are corelations.

Since functions are very particular relations, corelations and corelators are very
particular cases of relations and relators. However, if the ground sets X and Y are
fixed, then the former ones are important generalizations of the latter ones.

Therefore, corelations and corelators have to be studied before relations and
relators. We note that relators have already led to some substantial generalizations
of the usual algebraic and topological structures such as Galois connections and
proximity relations for instance.

A better question than that of Al-aeashi could be: ”What is the essential diffe-
rence between Algebra and Analysis?”. In my opinion, the only essential difference
is in the cardinality of the family of relations or corelations considered on the
corresponding ground set. The following two examples will clarify our imaginations.

The work of the author on relators and corelators has been supported by the Hungarian
Scientific Research Fund (OTKA) Grant K-111651.
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An ordered vector space over R is a pair X (≤ ) = (X, ≤ ) consisting of a vector
space X over R and an order relation ≤ on X which is compatible with the linear
operations to the extent that, for any r ∈ R and x, y, z ∈ X :

(1) x ≤ y implies x+ z ≤ y + z ;

(2) 0 ≤ r and x ≤ y imply r x ≤ r y .

The relation ≤ can be identified with the function defined by

f (x) =≤ (x) =
{
y ∈ X : x ≤ y

}
for all x ∈ X. And, the above compatibility properties can be expressed in the
form that :

(1) f (x) = x + f (0) for all x ∈ X ;

(2) f (0) + f (0) ⊆ f (0) ; (3) r f (0) ⊆ f (0) for all r ≥ 0 .

However, instead of the relation ≤ and the function f , it is more convenient to
consider the corelation defined by

F (A) = f [A ] =
⋃

x∈A
f (x)

for all A ⊆ X . And, to establish the corresponding properties of F .

A vector relator space over R is a pair X (R) = (X, R) consisting a vector
space X over R and and a relator R on X which is compatible with the linear
operations to the extent that :

(1) R (x) = x + R (0) for all X ∈ X and R ∈ R ;

(2) R (0) is an absorbing, balanced subset of X for all R ∈ R ;

(3) for each R ∈ R there exists S ∈ R such that S (0) + S (0) ⊆ R (0) .

Note that, if P is a family of preseminorms on a vector space X, then the relator

R =
{
Bp

r : p ∈ P , r > 0
}
,

where

Bp
r =

{
(x, y) ∈ X 2 : p (−x+ y ) < r

}
,

can be proved to have only the above three properties.

Of course, if the family P is directed upstairs in the sense that for any p, q ∈ P
there exists ρ ∈ P such that p ≤ ρ and q ≤ ρ , then the relator R has the useful
addition property that :

(4) for any R, S ∈ R there exists T ∈ R such that T (0) ⊆ R (0) ∩ S (0) .

Note that, because of the translation property (1), properties (2), (3) and (4) have
several useful consequences.

Instead of a relator R on X to Y , it is also more convenient to consider the
corelator

R . =
{
R . : R ∈ R

}
,

where R . is the corelation defined by

R .(A) = R [A ]
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for all A ⊆ X.

Conversely, if U is corelation on X to Y , then as a helpful tool we may also
naturally consider the relator

U / =
{
U / : U ∈ U

}
,

where U / the relation defined such that

U /(x) = U
(
{x}

)
for all x ∈ X.

Thus, the maps . and / establish an increasing Galois connection between
relations and corelatation on X to Y . Moreover, relations can be identified with
union-preserving corelations.

Therefore, the fact that corelators can generate more general structures than
relators can be demonstrated by taking a corelation U on X which is not union-
preserving.

The best such example is when U is just the complementation operation on X.
Namely, in this case, it can be easily shown that, for any relator R on X, we have
not only ClU 6= ClR, but also ClU (B) 6= ClR(B) for all B ⊆ X with B 6= ∅ .

Here, in contrast to the standard notation δU , for any corelator U on X to Y
and A ⊆ X and B ⊆ Y , we write A ∈ ClU (B) if U (A)∩B 6= ∅ for all U ∈ U .
And, for any x ∈ X, we write x ∈ clU (B) if {x} ∈ ClU (B) .

Now, for any relator R on X to Y, we may also naturally define ClR = ClR.

and clR = clR. . Thus, for any A ⊆ X and B ⊆ Y , we have A ∈ ClR(B) if
and only if R [A ] ∩ B 6= ∅ for all R ∈ R . And, we can also easily note that
clR(B) =

⋂
R∈R R−1 [B ] .

Moreover, for any corelator U on X to Y , we have clU = clU / . And, for any
corelation U on X to Y , A ⊆ X and B ⊆ Y , we have A ∈ ClU /(B) if and
only if A ∩ clU (B) 6= ∅ .

To show that the map / may also have some useful applications, we can note
that, for any corelator U on X, we may also naturally define

U ◦ =
{
U ◦ : U ∈ U

}
and U−1−1−1 =

{
U−1−1−1 : U ∈ U

}
,

where

U ◦ = U / . and U−1−1−1 = U /−1 . .

Moreover, for any two corelators U on X to Y and V on Y to Z , we may also
naturally define

V • U =
{
V • U : U ∈ U , V ∈ V

}
, where V • U =

(
V / ◦ U/

).
.
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6 Á. SZÁZ
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[76] Weil, A., Sur les espaces á structure uniforme et sur la topologie générale, Actual. Sci. Ind.
551, Herman and Cie, Paris, 1937.
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