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ÁRPÁD SZÁZ

Abstract. This is a research proposal for those who are interested the in the

unification of several continuity-like properties of functions and relations in

the framework of relator spaces. For this, motivated by Galois connections,
we shall use a pair of relators instead of a single function or relation.

A family R of relations on one set X to another Y is called a relator on X

to Y . All reasonable generalizations of the usual topological structures (such

as proximities, closures, topologies, filters and convergences, for instance) can
be derived from relators. Therefore, they should not be studied separately.

From the various topological and algebraic stuctures (such as lower bounds,

minimum and infimum, for instance) derived from relators, by using Pataki
connections, we obtain several closure and modification operations for relators.

Each of them leads to four reasonable continuity or increasingness properties.

1. Relations and relators

A subset R of a product set X×Y is called a relation on X to Y . In particular,
a relation R on X to itself is simply called a relation on X. And, ∆X = {(x, x) :
x ∈ X } is called the identity relation on X.

If R is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
R (x) = {y ∈ Y : (x, y ) ∈ R} and R [A ] =

⋃
a∈A R (a) are called the images of

x and A under R , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called
the domain and range of F . If in particular DF = X, then we say that F is a
relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x? and x ∗ y instead of ?(x) and ∗(x, y ).
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2 Á. SZÁZ

If R is a relation on X to Y , then we have R =
⋃
x∈X {x}×R (x). Therefore,

the values R (x), where x ∈ X, uniquely determine R . Thus, a relation R on X
to Y can be naturally defined by specifying R (x) for all x ∈ X.

For instance, the complement relation F c can be defined such that F c(x) =
F (x)c = Y \ F (x) for all x ∈ X. Thus, we also have F c = X×Y \ F . Moreover,
we can note that F c [A ]c =

⋂
a∈A F (a) for all A ⊆ X. ( See [51] .)

While, the inverse relation R−1 can be defined such that R−1(y) = {x ∈ X :
y ∈ R (x)} for all y ∈ Y . Thus, we also have R−1 = {(y , x) : (x, y ) ∈ R} .
Moreover, we can note that F −1 [B ] = {x ∈ X : F (x) ∩B 6= ∅} for all B ⊆ Y .

Moreover, if in addition S is a relation on Y to Z, then the composition relation
S ◦ R can be defined such that (S ◦ R )(x) = S [R (x) ] for all x ∈ X. Thus, we
also have (S ◦R ) [A ] = S

[
R [A ]

]
for all A ⊆ X.

While, if S is a relation on Z to W , then the box product relation R � S can
be defined such that (R � S )(x, z ) = R (x) × S (z) for all x ∈ X and z ∈ Z .
Thus, we have (R� S )[A ] = S ◦A ◦R−1 for all A ⊆ X×Z . ( See [51] .)

Hence, by taking A = {(x, z )} , and A = ∆Y if Y = Z , one can at once see
that the box and composition products are actually equivalent tools. However, the
box product can be immediately defined for an arbitrary family of relations too.

Now, a relation R on X may be defined to be reflexive if ∆X ⊆ R , and
transitive if R◦R ⊆ R . Moreover, R may be defined to be symmetric if R−1 ⊆ R ,
and antisymmetric if R ∩R−1 ⊆ ∆X .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

According to algebra, for any relation R on X, we may naturally define
R 0 = ∆X , and Rn = R ◦ R n−1 if n ∈ N . Moreover, we may also define
R∞ =

⋃∞
n=0 R

n . Thus, R∞ is the smallest preorder relation containing R [8].

Now, in contrast to (F c )c = F and (F −1 )−1 = F , we have (R∞ )∞ = R∞ .
Moreover, analogously to (F c )−1 = (F −1 )c , we also have (R∞ )−1 = (R−1 )∞ .
Thus, in particular R−1 is also a preorder on X if R is a preorder on X.

A family R of relations on one set X to another Y is called a relator on X to
Y . And, the ordered pair (X, Y )(R) =

(
(X, Y ), R

)
is called a relator space.

( For the origins and motivations, see [25, 31, 39, 42] and the references in [25] .)

If in particular R is a relator on X to itself, then we may simply say that R is
a relator on X. And, by identifying singletons with their elements, we may simply
write X(R) in place of (X, X )(R) , since (X, X ) = {{X }} .

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [2] and uniform spaces [6] . However, they are insufficient for
some important purposes. ( See, for instance, [7] and [38] .)

A relator R on X to Y , or a relator space (X, Y )(R) , is called simple if there
exists a relation R on X to Y such that R = {R}. In this case, by identifying
singletons with their elements, we may write (X, Y )(R) in place of (X, Y )

(
{R}

)
.

According to Száz [41], a simple relator space X (R) may be called a goset
(generalized ordered set). Moreover, by Ganter and Wille [7, p. 17] , a simple
relator space

(
X, Y

)
(R) may be called a formal context or context space.
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A relator R on X, or a relator space X(R) , may, for instance, be naturally
called reflexive if each member of R is reflexive. Thus, we may also naturally speak
of preorder, tolerance, and equivalence relators.

For instance, for a family A of subsets of X , the family RA = {RA : A ∈ A} ,
where RA = A2 ∪ Ac×X , is a preorder relator on X . Such relators were first
used by Davis [3] and Pervin [21] .

While, for a family D of pseudo-metrics on X, the family RD = {B d
r : r > 0 ,

d ∈ D} , where B d
r = {(x, y ) ∈ X 2 : d(x, y) < r } , is a tolerance relator on X.

Such relators were first considered by Weil [63] .

Moreover, if S is a family of partitions of X, then the family RS = {SA : A ∈
S } , where SA =

⋃
A∈A A2 , is an equivalence relator on X. Such practically

important relators were first studied by Levine [12] .

2. Structures derived from relators

If R is a relator on X to Y , then for any A ⊆ X , B ⊆ Y and x ∈ X we
write :

(1) A ∈ IntR (B ) if R [A ] ⊆ B for some R ∈ R ,

(2) A ∈ ClR (B ) if R [A ] ∩ B 6= ∅ for all R ∈ R ,

(3) x ∈ intR(B) if {x} ∈ IntR(B), (4) x ∈ clR(B) if {x} ∈ ClR(B),

(5) B ∈ ER if intR (B ) 6= ∅ , (6) B ∈ DR if clR (B ) = X .

Moreover, if in particular R is a relator on X , then for any A ⊆ X we also
write :

(7) A ∈ τR if A ∈ IntR (A) , (8) A ∈ τ-R if Ac /∈ ClR (A) ,

(9) A ∈ TR if A ⊆ intR (A) , (10) A ∈ FR if clR (A) ⊆ A .

The relations IntR and intR are called the proximal and topological interiors
generated by R , respectively. While, the members of the families, τR, TR and
ER are called the proximally open, topologically open, and fat subsets of the relator
spaces X (R) and (X, Y )(R) , respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity
δ [4] and Smirnov’s strong inclusion b [23] , respectively. The families τR and
ER were first explicitly used by the first author [31] . In particular, the practical
notation τ-R has been suggested by János Kurdics.

Because of the above definitions, for any relator R on X to Y and B ⊆ Y , we
have

ClR(B ) = P(X) \ IntR
(
B c
)

and clR(B ) = X \ intR
(
B c ) ,

and

DR =
{
D ⊆ Y : D c /∈ ER

}
=
{
D ⊆ Y : ∀ E ∈ ER : E ∩D 6= ∅

}
.

Moreover, if in particular, R is a relator on X, then we also have

τ-R =
{
A ⊆ X : Ac ∈ τR

}
and FR =

{
A ⊆ X : Ac ∈ TR

}
.

In this respect, it is also worth mentioning that, for any relator R on X to Y
we have

ClR−1 = Cl−1
R and IntR−1 = CY ◦ Int−1

R ◦ CX ,
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where CX(A) = X \ A for all A ⊆ X. Moreover, in particular, for any relator
R on X, we have τ-R = τR−1 . Therefore, the proximal closures and proximally
open sets are usually more convenient tools than the topological closures (proximal
interiors) and topologically open sets, respectively.

The fat sets are frequently also more convenient tools than the topologically open
sets [29]. For instance, if ≤ is a certain order relation on X , then T≤ and E≤
are just the families of all ascending and residual subsets of the ordered set X (≤ ) ,
respectively.

To clarify the advantage of fat sets over the open ones, we can also note that if
in particular X = R , and R is a relation on X such that

R (x) = {x− 1 } ∪ [x , +∞ [

for all x ∈ X, then TR = { ∅ , X } , but ER is quite large family. Namely, the
supersets of each R(x) , with x ∈ X, are also in ER .

If R is a relator on X to Y , and Φ and Ψ are relations on a relator space
Γ(U ) to X and Y , respectively, then by using the relation (Φ⊗Ψ) , defined such
that

(Φ⊗Ψ)(γ ) = Φ(γ)×Ψ(γ)

for all γ ∈ Γ , we may also define

(11) Φ ∈ LimR (Ψ) if (Φ⊗Ψ)−1[R ] ∈ EU for all R ∈ R ,

(12) Φ ∈ AdhR (Ψ) if (Φ⊗Ψ)−1[R ] ∈ DU for all R ∈ R .

Now, for any A ⊆ X , we may also naturally write :

(13) A ∈ limR(Ψ) if AΓ∈ LimR(Ψ), (14) A ∈ adhR(Ψ) if AΓ∈ AdhR(Ψ),

where AΓ is a relation on Γ to X such that AΓ(γ) = A for all γ ∈ Γ .

The big limit relation LimR , suggested by Efremović and Švarc [5] , is, in
general, a much stronger tool in the relator space (X, Y )(R) than the big closure
and interior relations ClR and IntR suggested by Efremović [4] and Smirnov [23].

Namely, it can be shown that, for any A ⊆ X and B ⊆ Y , we have A ∈ ClR(B )
if and only if there exist a preordered set Γ(≤) and functions ϕ and ψ of Γ to
A and B , respectively, such that ϕ ∈ LimR(ψ )

(
ϕ ∈ AdhR(ψ )

)
.

Finally, we note that if R is a relator on X to Y , then according to [39] for
any A ⊆ X , B ⊆ Y , x ∈ X, and y ∈ Y we may also naturally write :

(a) B ∈ UbR (A) and A ∈ LbR(B ) if A×B ⊆ R for some R ∈ R ,

(b) y ∈ ubR(A) if {y} ∈ UbR(B) , (c) x ∈ lbR(B) if {x} ∈ LbR(A) ,

(d) A ∈ UR if ubR(A) 6= ∅ , (e) B ∈ LR if lbR(B ) 6= ∅ .

Moreover, in particular R is a relator on X, then for any A ⊆ X we may also
naturally define :

(f) maxR(A) = A ∩ ubR(A) , (g) minR(A) = A ∩ lbR(A) ,

(h) MaxR(A) = P(A) ∩UbR(A) , (i) MinR(A) = P(A) ∩ LbR(A) ,

and thus also

(j) supR(A) = minR
(
ubR(A)

)
, (k) infR(A) = maxR

(
lbR(A)

)
.
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(l) SupR(A) = MinR
[

UbR(A)
]

, (m) InfR(A) = MaxR
[

LbR(A)
]

.

Now, analogously to the families τR and TR, we may also naturally define :

(n) A ∈ uR if A ∈ UbR(A) ,

(o) A ∈ UR if A ⊆ ubR(A) , (p) A ∈ LR if A ⊆ lbR(A) .

Thus, for instance, it can be shown that

A ∈ uR ⇐⇒ A ∈ LbR(A) ⇐⇒ A ∈ MinR(A) ⇐⇒ A ∈ InfR(A) ,

and uR = MinR
[
P(X)

]
= MaxR

[
P(X)

]
. Moreover, LbR = UbR−1 = Ub−1

R .

However, the above algebraic structures are not independent of the former topo-
logical ones. Namely, if R is a relation on X to Y , then for any A ⊆ X and
B ⊆ Y we have

A×B ⊆ R ⇐⇒ ∀ a ∈ A : B ⊆ R(a) ⇐⇒ ∀ a ∈ A : R(a) c ⊆ B c

⇐⇒ ∀ a ∈ A : R c(a) ⊆ B c ⇐⇒ R c [A ] ⊆ B c.

Therefore, if R is a relator on X to Y , then by the corresponding definitions, for
any A ⊆ X and B ⊆ Y , we also have

A ∈ LbR(B) ⇐⇒ A ∈ IntR c(B c) ⇐⇒ A ∈
(

IntR c◦ CY
)
(B ) .

Hence, we can already infer that

LbR = IntR c◦ CY , and IntR = LbR c◦ CY .

Therefore, in contrast to a common belief, some algebraic and topological structures
are just as closely related to each other by the above equalities, and their particular
cases

lbR = intR c◦ CY , and intR = lbR c◦ CY ,
as the exponential and the trigonometric functions are by the celebrated Euler
formulas [24, p. 227 ] .

Now, a function F of the class of all relator spaces to some other class may
be called a structure for relators if, for any relator R on X to Y , the value
FR = FXY

R = F
(
(X, Y )(R)

)
is in a power set depending only on X and Y .

3. Some important operations for relators

In particular, a function � of the class of all relator spaces to the class of all
relators may be called a direct unary operation for relators if, for any relator R on
X to Y , the value R � = R �XY = �

(
(X, Y )(R)

)
is also a relator on X to Y .

An arbitrary unary operation � for relators is called extensive, intensive,
involutive and idempotent if for any relator R on X to Y we have R ⊆ R � ,
R � ⊆ R , R �� = R , and R �� = R � , respectively .

In particular, an increasing idempotent operation for relators is called a modi-
fication (or projection) operation. While, an extensive (intensive) modification
operation for relators is called a closure (interior) operation.

Moreover, an increasing extensive (intensive) operation is called a preclosore
(preinterior) operation. And, an extensive (intensive) idempotent operation is
called a semiclosure (semiinterior) operation.
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For instance, the functions c and −1 , defined by

R c =
{
R c : R ∈ R

}
and R−1 =

{
R−1 : R ∈ R

}
for any relator R on X to Y , are increasing involution operations for relators such

that
(
R c
)−1

=
(
R−1

)c
. Thus, the operation c is inversion compatible.

And, the functions ∞ and ∂ , defined by

R∞ =
{
R ∞ : R ∈ R

}
and R ∂ =

{
S ⊆ X 2 : S ∞ ∈ R

}
for any relator R on X, are modification operations for relators such that, for any
two relators R and S on X, we have

R∞ ⊆ S ⇐⇒ R ⊆ S ∂ .
Therefore, the operations ∞ and ∂ form a Galois connection [2, p. 155] . Thus,
in particular ∞ ∂ is a closure operation for relators such that ∞ =∞ ∂∞ .

To investigate inclusions between generalized topologies derived from relations
and relators, the operations ∞ and ∂ were first introduced by Mala [14] and
Pataki [19] , respectively. Moreover, by using several more powerful structures
derived from relators, Száz [33] and Pataki [19] defined a great abundance of
important closure (refinement) operations for relators. Some of them were already
considered by Kenyon [10] and H. Nakano and K. Nakano [17] .

For instance, for any relator R on X to Y , the relators

R ∗ =
{
S ⊆ X×Y : ∃ R ∈ R : R ⊆ S

}
,

R# =
{
S ⊆ X×Y : ∀ A ⊆ X : ∃ R ∈ R : R [A ] ⊆ S [A ]

}
,

R∧ =
{
S ⊆ X×Y : ∀ x ∈ X : ∃ R ∈ R : R (x) ⊆ S (x)

}
,

and

RM =
{
S ⊆ X×Y : ∀ x ∈ X : ∃ u ∈ X : ∃ R ∈ R : R (u) ⊆ S (x)

}
are called the uniform, proximal, topological, and paratopological closures (refine-

ments) of the relator R , respectively.

Thus, we evidently have R ⊆ R ∗ ⊆ R# ⊆ R∧ ⊆ RM for any relator R on X
to Y . Moreover, if in particular R is a relator on X, then we can easily prove
that R∞ ⊆ R ∗∞ ⊆ R∞∗ ⊆ R ∗ .

However, it is now more important to note that, because of the corresponding
definitions of Section 2, we also have

R# =
{
S ⊆ X×Y : ∀ A ⊆ X : A ∈ IntR

(
S [A ]

) }
,

R∧ =
{
S ⊆ X×Y : ∀ x ∈ X : x ∈ intR

(
S(x)

)}
,

RM =
{
S ⊆ X×Y : ∀ x ∈ X : S(x) ∈ ER

}
.

Morover, by using a Pataki connections [19, 55] , we can, for instance, prove the
following theorems and their corollaries.

Theorem 3.1. # , ∧ and M are closure operations for relators such that, for any
two relators R and S on X to Y , we have

(1) S ⊆ R# ⇐⇒ S # ⊆ R# ⇐⇒ IntS ⊆ IntR ⇐⇒ ClR ⊆ ClS ,
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(2) S ⊆ R∧ ⇐⇒ S ∧ ⊆ R∧ ⇐⇒ intS ⊆ intR ⇐⇒ clR ⊆ clS ,

(3) S ⊆ RM ⇐⇒ SM ⊆ RM ⇐⇒ ES ⊆ ER ⇐⇒ DR ⊆ DS .

Corollary 3.2. For any relator R on X to Y ,

(1) S = R# is the largest relator on X to Y such that IntS = IntR , or
equivalently ClS = ClR ;

(2) S = R∧ is the largest relator on X to Y such that intS = intR , or
equivalently clS = clR ;

(3) S = RM is the largest relator on X to Y such that ES = ER , or
equivalently DS = DR .

Theorem 3.3. # ∂ is a closure operation for relators such that for any two relators
R and S on X, we have

S ⊆ R# ∂ ⇐⇒ S # ∂ ⊆ R# ∂ ⇐⇒ τS ⊆ τR ⇐⇒ τ-S ⊆ τ-R .

Corollary 3.4. For any relator R on X, S = R# ∂ is the largest relator on X
such that τS = τR or equivalently τ-S = τ-R .

Remark 3.5. ∧ ∂ is only a preclosure operation for relators. Moreover, if R is
a relator on X, then in general there does not exist a largest relator S such that
TS = TR . ( See Mala [14, Example 5.3] and Pataki [19, Example 7.2] .)

In the light of this and other disadvantages of the structure T , it is rather
curious that most of the works in topology and analysis are based on open sets
suggested by Tietze [62] and standardized by Bourbaki [1] and Kelley [9] .

Moreover, it also a striking fact that, despite the results of Pervin [21] , Fletcher
and Lindgren [6] and Száz [45] , generalized topologies and minimal structures are
still intensively investigated by a great number of mathematicians.

Concerning the structures T and F , instead of an analogue of Theorem 3.3,
we can only prove the following generalizations of the results of Mala and Száz
[14, 16] .

Theorem 3.6. ∧∞ is a modification operation for relators such that, for any two
relators R and S on X, we have

S ∧∞ ⊆ R∧ ⇐⇒ S ∧∞ ⊆ R∧∞ ⇐⇒ TS ⊆ TR ⇐⇒ FS ⊆ FR .

Corollary 3.7. For any relator R on X, S = R∧∞ is the largest preorder relator
on X such that TS = TR or equivalently FS ⊆ FR .

Remark 3.8. Quite similar theorems can be proved concerning the modification
operations #∞ and ∞# .

Their advantage over the closure operation # ∂ lies mainly in the fact that,
in contrast to the letter one, they are still stable in the sense that they leave the
relator {X 2} fixed for any set X.

Finally, we note that, by using the notations #© = c# c and ∧© = c ∧ c , we
can also prove the following partial analogues of Theorem 3.1 and its corollary.

Theorem 3.9. #© and ∧© are closure operations for relators such that, for any
two relators R and S on X to Y , we have
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(1) S ⊆ R #© ⇐⇒ S #© ⊆ R #© ⇐⇒ LbS ⊆ LbR ,

(2) S ⊆ R ∧© ⇐⇒ S ∧© ⊆ R ∧© ⇐⇒ lbS ⊆ lbR .

Corollary 3.10. For any relator R on X to Y ,

(1) S = R #© is the largest relator on X to Y such that LbS = LbR ;

(2) S = R ∧© is the largest relator on X to Y such that lbS = lbR .

If � is an unary operation for relators, then a relator R on X on to Y is
called �–fine if R� = R . Moreover, two relators R and S on X to Y are called
�–equivalent if R� = S� .

In particular a relator R on X to Y is called �–simple if it is �–equivalent to
a simple relator {R} on X to Y . Moreover, for instance, a relator R on X is
called �–well-chained if R�∞ = {X 2}�∞ .

Beside the above unary operations, we may also naturally introduce some useful
binary operations for relators. For instance, for any two relators R on X to Y
and S on Y to Z , we may naturally define

S ◦ R =
{
S ◦R : R ∈ R , S ∈ S

}
.

Hence, by using that
(
S ◦ R )−1 = R−1◦ S−1 for all R ∈ R and S ∈ S, we can

easily see that
(
S ◦R )−1 = R−1◦ S−1. Moreover, it can also be easily seen that

the composition of relators is also associative.

Thus, a unary operation � for relators, may be called left (right) composition
compatible [49] if(

S ◦ R
)�

=
(
S ◦ R �

)� ( (
S ◦ R

)�
=
(
S � ◦ R

)� )
for any two relators R on X to Y and S on Y to Z .

Unfortunately, the operations ∧ and M are only left composition compatible
[55]. Moreover, they are not inversions compatible [30] . Therefore, we shall also
need the notations ∨ = ∧ − 1 and O =M −1 .

4. Four basic continuity properties for pairs of relators

To motivate our forthcoming unifying definition for continuity properties, we
shall start with some simple observations on increasing functions [57, 58].

For these, the reader may recall that a goset (generalized ordered sets) X (≤)
is, by definition, a simply relator space of the form X (R) with ≤ in place of R .

Definition 4.1. A function f of a simple relator space X (R) to another Y (S )
is called increasing if for any u, v ∈ X

uRv =⇒ f (u)S f (v) .

Remark 4.2. Since uR v is only another notation for (u, v) ∈ R , it is clear the
following assertions are equivalent :

(1) f is increasing ;

(2) v ∈ R (u) =⇒ f (v) ∈ S
(
f (u)

)
;

(3) (u, v ) ∈ R =⇒
(
f (u) , f (v)

)
∈ S
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Moreover, concerning increasing increasing functions, we can also easily prove
the following

Theorem 4.3. For a function f of a simple relator space X (R) to another Y (S ) ,
the following assertions are equivalent :

(1) f is increasing ;

(2) f ◦R ⊆ S ◦ f , (3) R ⊆ f −1 ◦ S ◦ f ;

(4) f ◦R ◦ f −1 ⊆ S , (5) R ◦ f −1⊆ f −1◦ S .

Proof. By the corresponding definitions, it is clear that, for any u ∈ X, the
following assertions are equivalent :

(u, v ) ∈ R =⇒
(
f(u) , f(v)

)
∈ S ;

v ∈ R(u) =⇒ f(v) ∈ S
(
f(u)

)
;

f [R(u) ] ⊆ S
(
f(u)

)
;

(f ◦R)(u) ⊆ (S ◦ f )(u) .

Therefore, by Remark 4.2, assertions (1) and (2) are also equivalent.

The proofs of the remaining equivalences depend on the increasingness and
associativity of composition, and the inclusions

∆X ⊆ f −1◦ f and f ◦ f −1 ⊆ ∆Y ,

where ∆X and ∆Y are the identity functions of X and Y , respectively.

Remark 4.4. The latter inclusions indicate that assertions (2)–(5) need not be
equivalent for an arbitrary relation f on X(R) to Y (S ) .

Therefore, they can be naturally used to define different increasingness properties
of a relation f on X(R) to Y (S ) .

Remark 4.5. Having in mind set-valued functions, a relation F on a goset X (≤ )
to a set Y may be naturally called increasing if u ≤ v implies F (u) ⊆ F (v) for
all u, v ∈ X.

Thus, it can be easily shown that the relation F is increasing if and only if its
inverse F −1 is ascending-valued in the sense that F −1(y) is an ascending subset
of X(≤) for all y ∈ Y .

By using the more convenient notation R =≤ , the latter statement can be
reformulated in the form that R [ F −1(y) ] ⊆ F −1(y) for all y ∈ Y . That is,
R ◦ F −1 ⊆ F −1 , and thus R ◦ F −1 ⊆ F −1◦∆Y .

However, it is now more important to note that, by using our former operations
on relators, Theorem 4.3 can be reformulated in the following instructive form.

Theorem 4.6. If f is a function of one simple relator space X(R) to another
Y (S ) , then under the notations

F = {f } , R = {R} and S = {S}
the following assertions are equivalent :

(1) f is increasing ;

(2)
(
S ∗◦ F ∗

)∗⊆ (F ∗◦ R ∗)∗, (3)
((
F ∗
)−1◦ S ∗◦ F ∗

)∗
⊆ R ∗∗,
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(4) S ∗∗⊆
(
F ∗◦ R ∗ ◦

(
F ∗
)−1
)∗

, (5)
((
F ∗
)−1◦ S ∗

)∗
⊆
(
R ∗◦

(
F ∗
)−1
)∗

.

Proof. The check the equivalences of the assertions (2)–(5) of this theorem to
assertions (2)–(5) of Theorem 4.3 it is convenient to use that ∗ is an inversion
and composition compatible closure operation for relators. Thus,

(a)
(
R ∗
)−1

=
(
R−1

)∗
for any relator R on X to Y ;

(b) R ⊆ S ∗ ⇐⇒ R ∗ ⊆ S ∗ for any relators R and S on X to Y ;

(c)
(
S ◦R

)∗
=
(
S ∗◦R∗

)∗
for any relators R on X to Y and S on Y to Z .

Remark 4.7. Note that in Remark 4.2 and Theorems 4.3 and 4.6, R and S may
be thought of not only as certain order relations ≤X and ≤Y , but also as some
surroundings B dX

δ and B dY
ε .

Therefore, instead of the term ”increasing”, we can equally well use the term
”continous”. Namely, if R = B dX

δ and S = B dY
ε , then assertion (3) of Remark

4.2 means only that dX(u, v ) < δ implies dY
(
f (u), f (v)

)
< ε .

Now, by pexiderizing the inclusions (2)–(5) in Theorem 4.6, we may naturally
introduce the following general definition whose origins go back to [25, 22, 38] .

Definition 4.8. Let (X, Y )(R) and (Z , W )(S ) be relator spaces. Moreover,
let F be a relator on X to Z , and G be a relator on Y to W .

Then for a family � = (� i )6
i=1 of direct unary operations for relators, we say

that the pair

(1) (F , G ) is upper �–continuous with respect to the relators R and S if(
S�1 ◦ F �2

)�3

⊆
(
G�4 ◦ R�5

)�6

,

(2) (F , G ) is mildly �–continuous with respect to the relators R and S if((
G�1

)−1

◦ S�2 ◦ F �3

)�4

⊆ R�5�6 ,

(3) (F , G ) is vaguely �–continuous with respect to the relators R and S if

S�1�2 ⊆
(
G �3 ◦ R�4 ◦

(
F�5

)−1
)�6

,

(4) (F , G ) is lower �–continuous with respect to the relators R and S if((
G�1

)−1

◦ S�2

)�3

⊆
(
R�4 ◦

(
F �5

)−1
)�6

.

Remark 4.9. To keep in mind the above assumptions, for any R ∈ R , S ∈ S ,
F ∈ F and G ∈ G , one can use the diagram :

X
F−−−−→ Z

R

y yS
Y

G−−−−→ W
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Remark 4.10. Now, for any F ∈ F and G ∈ G , the pair (F , G) may, for
instance, be naturally called upper �–continuous, if the pair

(
{F } , {G}

)
is upper

�–continuous. That is,(
S�1 ◦ {F }�2

)�3

⊆
(
{G}�4 ◦ R�5

)�6

.

Unfortunately, this condition may greatly differ from the more natural require-

ment that
(
S�1 ◦ F

)�3 ⊆
(
G ◦ R�5

)�6
which should also be given an appro-

priate name.

In this respect, it is worth noticing that, for instance, we have

{F }# = {F }∗ and {F }∧ = {F }∗ , but {F }M =
{
F ◦XX

}∗
for all F ∈ F .

Remark 4.11. Thus, the the pair (F , G) may, for instance, be naturally called
selectionally upper �–continuous if for any selection functions f of F and g of
G the pair (f , g ) is upper �–continuous.

Moreover, the pair (F , G ) may, for instance, be naturally called elementwise
upper �–continuous if for any F ∈ F and G ∈ G , the pair (F , G) is upper
�–continuous. This may greatly differ from property (1).

Remark 4.12. If in particular � is a direct unary operation for relators, then the
pair (F , G ) may, for instance, be also naturally called upper �–continuous if it
is upper (� )6

i=1–continuous. That is,(
S� ◦ F �

)�
⊆
(
G� ◦ R�

)�
.

Remark 4.13. Thus, the pair (F , G ) may, for instance, be naturally called
properly upper continuous if it is upper �–continuous with � being the identity
operation for relators. That is, S ◦ F ⊆ G ◦ R .

Moreover, the pair (F , G ) may, for instance, be also naturally called uni-
formly, proximally, topologically and paratopologically upper continuous if it is
�–continuous with � = ∗ , # , ∧ and M , respectively.

Thus, by using the operations �∞ and � ∂ instead of � , we can quite simi-
larly speak of the corresponding quasi-countinuity and pseudo-continuity properties
of (F , G ) .

Remark 4.14. Finally, we note that if in particular X = Y and Z = W , then
the relator F and a relation F ∈ F may, for instance, be naturally called upper
�–continuous if the pairs (F , F ) and (F , F ) are upper �–continuous, respec-
tively.

5. Relationshipps with Galois and Pataki connections

By [46, 54] , we may naturally introduce the following

Definition 5.1. Let X (R) and Y (S ) be simple relator spaces. Moreover, let f
be a function of X to Y and g be a function of Y to X .

Then, we say that f is increasingly right g–normal if for any x ∈ X and y ∈ Y
f (x)S y =⇒ xR g (y) .
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Remark 5.2. In this case, we may also say that the functions f and g form an
increasing right Galois connection between X (R) and Y (S ) .

Now, analogously to Theorem 4.3, we can only prove the following

Theorem 5.3. Under the notations of Definition 5.1, the following assertions are
equivalent :

(1) f is increasingly right g–normal ;

(2) S ◦ f ⊆ g−1◦R ; (3) g ◦ S ◦ f ⊆ R .

Proof. To prove equivalence of (1) and (2), note that, for any x ∈ X, the following
assertions are equivalent :

f(x)S y =⇒ xR g(y) ,

y ∈ S
(
f(x)

)
=⇒ g(y) ∈ R (x) ,

y ∈ S
(
f(x)

)
=⇒ y ∈ g−1 [R(x) ] ,

S
(
f(x)

)
⊆ g−1 [R(x) ](

S ◦ f
)
(x) ⊆

(
g−1◦R

)
(x) .

Remark 5.4. From this theorem, by using the operation ∗ , we can easily derive
an analogue of Theorem 4.6.

However, it is now more important to note that, by using Theorem 5.3 and the
operation ~ = c ∗ c , we can also prove the following

Theorem 5.5. Under the notations

F = {f } , G = {g} , R = {R} and S = {S} ,

the following assertions are equivalent :

(1) f is increasingly right g–normal ;

(2)
(
S~ ◦ F ~

)~ ⊆ ((G ~ )−1◦ R~
)~

; (3)
(
G~ ◦ S~ ◦ F~

)~ ⊆ R~~ .

Remark 5.6. To check this, note that for any relator R on X to Y and relation
S on X to Y we have

S ∈ R~ ⇐⇒ S ∈ Rc∗c ⇐⇒ S c ∈ Rc∗ ⇐⇒ ∃ U ∈ Rc : U ⊆ S c

⇐⇒ ∃R ∈ R : Rc ⊆ S c ⇐⇒ ∃R ∈ R : S ⊆ R .

Therefore,

R~ =
{
S ⊆ X×Y : ∃ R ∈ R : S ⊆ R

}
.

Hence, it can be easily seen that ~ is also an inversion and composition com-
patible closure operation for relators. Moreover, we can also note that

R~ =
⋃
R∈R

P (R) .

Now, analogously to Definition 4.8, we may also naturally introduce the following
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Definition 5.7. Let (X, Y )(R) and (Z , W )(S ) be relator spaces. Moreover,
let F be a relator on X to Z , and G be a relator on W to Y .

Then for a family � = (� i )6
i=1 of direct unary operations for relators, we say

that :

(1) F is increasingly upper right �–G–normal with respect to the relators R
and S if (

S�1 ◦ F �2

)�3

⊆
((
G�4

)−1

◦ R�5

)�6

,

(2) F is increasingly mildly right �–G–normal with respect to the relators R
and S if (

G�1 ◦ S�2 ◦ F �3

)�4

⊆ R�5�6 ,

(3) F is increasingly vaguely right �–G–normal with respect to the relators
R and S if

S�1�2 ⊆
((
G �3

)−1

◦ R�4 ◦
(
F�5

)−1
)�6

,

(4) F is increasingly lower right �–G–normal with respect to the relators R
and S if (

G�1 ◦ S�2

)�3

⊆
(
R�4 ◦

(
F �5

)−1
)�6

.

Thus, for instance, we can easily establish the following

Theorem 5.8. If in particular the operation �4 is inversion compatible, then the
following assertions are equivalent :

(1)
(
F , G−1

)
is upper �–continuous ;

(2) F is increasingly upper right �–G–normal .

By [46, 54] , we may also naturally introduce the following

Definition 5.9. Let X (R) and Y (S ) be simple relator spaces. Moreover, let f
be a function of X to Y , and ϕ be a function of X to itself.

Then, we say that f is increasingly right ϕ–regular if for any u, v ∈ X

f(u)S f(v) =⇒ uRϕ(v) .

Remark 5.10. In this case, we may also say that the functions f and ϕ form an
increasing right Pataki connection between X (R) and Y (S ) .

To clarify the relationship between Definitions 5.1 and 5.9, we can easily prove
the following two lemmas.

Lemma 5.11. If f is increasingly right g–normal for some function g of Y to
X and ϕ = g ◦ f , then f is increasingly right ϕ–regular.

Lemma 5.12. If f is increasingly right ϕ–regular, Y = f [X ] and g is a function
of Y to X such that ϕ = g ◦ f , then f is increasingly right g–normal.

Proof. Suppose that x ∈ X and y ∈ Y . Then, since f is onto Y , there exists
v ∈ X such that y = f (v) .
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Now, we can easily see that

f (x)S y ⇐⇒ f (x)S f (v) ⇐⇒ xRϕ (v)

⇐⇒ xR (g ◦ f )(v) ⇐⇒ xR g
(
f (v)

)
⇐⇒ xR g (y) .

Therefore, the required assertion is true.

Now, analogously to Theorem 5.3, we can only prove the following

Theorem 5.13. Under the notations of Definition 5.9, the following assertions are
equivalent :

(1) f is right ϕ–regular ; (2) f −1◦ S ◦ f ⊂ ϕ−1◦R ,

Proof. To check this, note that, for any u, v ∈ X, the following asertions are
equivalent :

f(u)S f(v) =⇒ uRϕ(v) ,

f(v) ∈ S
(
f(u)

)
=⇒ ϕ(v) ∈ R(u) ,

v ∈ f −1
[
S
(
f(u)

) ]
=⇒ v ∈ ϕ−1 [R(u) ] ,

f −1
[
S
(
f(u)

) ]
⊆ ϕ−1 [R(u) ](

f −1◦ S ◦ f
)
(u) ⊆

(
ϕ−1◦R

)
(u) .

Remark 5.14. From this theorem, by using the operation ∗ , we can easily derive
an analogue of Theorem 4.6.

However, again it is more important to note that, by using Theorem 5.13 and
the operation ~ = c ∗ c , we can also prove the following

Theorem 5.15. Under the notations

F = {f } , Φ = {ϕ} , R = {R} and S = {S} ,

the following assertions are equivalent :

(1) f is increasingly right ϕ–regular ;

(2)
((
F~
)−1◦ S~◦ F~

)~
⊆
((

Φ~
)−1◦ R~

)~
.

Now, analogously to Definition 5.7, we can only introduce the following

Definition 5.16. Let (X, Y )(R) and Z (S ) be relator spaces, Moreover, let F
be a relator on X to Z , and Φ be a relator on X to Y .

Then, for a family � = (� i )7
i=1 of direct unary operations for relators, we say

that F is increasingly right �–Φ–regular with respect to the relators R and S if((
F�1

)−1

◦ S�2 ◦ F �3

)�4

⊆
((

Φ�5

)−1

◦ R�6

)�7

.

Thus, for instance, we can easily establish the following

Theorem 5.17. If in particular �5 = �6 = �7 is an inversion and composition

compatible closure operation for relators and ♦ =
(
� i
)6

i=1
, then the following

assertions are equivalent :
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(1) F is mildly ♦–continuous with respect to the relators Φ ◦ R and S ;

(2) F is increasingly right �–Φ–regular with respect to the relators R and S .
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[16] Mala, J. and Száz, Á., Modifications of relators, Acta Math. Hungar. 77 (1997), 69–81.

[17] Nakano, H. and Nakano, K., Connector theory, Pacific J. Math. 56 (1975), 195–213.

[18] Pataki, G., Supplementary notes to the theory of simple relators, Radovi Mat. 9 (1999),
101–118.

[19] Pataki, G., On the extensions, refinements and modifications of relators, Math. Balk.

15 (2001), 155–186.
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[42] Száz, Á., Rare and meager sets in relator spaces, Tatra Mt. Math. Publ. 28 (2004), 75–95.
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