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A MOST GENERAL SCHWARZ INEQUALITY FOR

GENERALIZED SEMI-INNER PRODUCTS ON GROUPOIDS

ZOLTÁN BOROS AND ÁRPÁD SZÁZ

Abstract. By introducing an appropriate notion of generalized semi-inner

products on groupoids, we shall prove a very general form of the famous

Schwarz inequality.

In case of groups, this will be sufficient to prove the subadditivity of the

induced generalized seminorms. Thus, some results on inner product spaces
can be extended to inner product groups.

1. Introduction

Semi-inner products on groups were first introduced by the second author in
[16] to prove a natural generalization of a basic theorem of Maksa and Volkmann
[13] on additive functions without any particular tricks preferred by functional
equationalists.

In [16] , the second author claimed that even a weaker form of Schwarz inequality
cannot be proved for semi-inner products on groups. Moreover, he asked several
mathematicians in Debrecen and Cluj-Napoca, at a conference, to justify his state-
ment by providing an appropriate example.

However, the first author in [3] could disprove this claim by proving a weak
form of Schwarz inequality which is slightly more than that is sufficient to prove
the subadditivity the induced generalized seminorms. Thus, some results on inner
product spaces can be extended to inner product groups.

This weak Schwarz inequality has been greatly utilized and further generalized
by the second author. It has turned out that a consequence of it can be proved
even for semi-inner products on groupoids. The corresponding results have been
presented in our technical reports [6] and [7] .

Later, the second author has noticed that even the weak Schwarz inequality
proved in [7] can still be further generalized by using the smallest denominator

n (r) = min
{
n ∈ N : n r ∈ Z

}
and the corresponding numerator m (r) = n (r) r of a rational number r studied
and applied in our former papers [4] and [5] .
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2 Z. BOROS AND Á. SZÁZ

For this, in the present paper, we shall suppose that X is a groupoid and P is
a function of X 2 to C such that, under the notations

∆P (x) = P (x, x) and P1(x, y) = 2−1
(
P (x, y) + P (x, y)

)
,

for any n ∈ N and x, y ∈ X we have

(a) ∆P (x) = ∆P1
(x) ,

(b) P1(nx , y ) = nP1(x, y) = P1(x, n y) ,

(c) ∆P (x+ y) = ∆P (x) + ∆P (y) + 2P1(x, y) .

By using this generalized semi-inner product P and the notations

αP (x, y) = inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
and

βP (x, y ) = inf
r∈Q+

1

m(r)n(r)
∆P

(
m (r)x + n (r) y

)
,

we shall show that

βP (x, y ) ≤ αP (x, y ) + 2P1(x, y)

for all x, y ∈ X .

Hence, by assuming that ∆P is nonnegative and proving that

αP (x, y) = 2
√

∆P (x) ∆P (y) ,

we can already derive the corresponding weak form

−P1(x, y) ≤ p (x) p (y)

of Schwarz inequality with p (x) =
√

∆P (x) .

2. A generalized semi-inner product

Notation 2.1. Let X be a groupoid, and for any n ∈ N and x ∈ X define
nx = x if n = 1 and nx = (n− 1)x + x if n > 1 . Moreover, suppose that P is
a function of X 2 to C .

For any x, y ∈ X, define

∆P (x) = P (x, x) and P1(x, y) = 2−1
(
P (x, y) + P (x, y)

)
.

Moreover, suppose that for any n ∈ N and x, y ∈ X we have

(a) ∆P (x) = ∆P1
(x) ,

(b) P1(nx , y ) = nP1(x, y) = P1(x, n y) ,

(c) ∆P (x+ y) = ∆P (x) + ∆P (y) + 2P1(x, y) .

Remark 2.2. Properties (a), (b) and (c) will be called the the reality of ∆P ,
N-bihomogeneity of P1 and polarization identity for P , respectively.

The functions ∆P and P1 will be called the diagonalization and real part (first
coordinate function of P , respectively. Moreover, the function P itself will be
called a generalized semi-inner product on X.
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If in particular the groupoid X has a zero element 0 , then the generalized semi-
inner product P will be called a generalized inner product if ∆P (x) = 0 implies
x = 0 for all x ∈ X.

Some further useful additional properties of X and P will be assumed gradually
as the forthcoming definitions and theorems need. For instance, we may naturally
require X to be a group and P1 to be Z–bihomogeneous.

The following theorem clarifies our present generalization of the ordinary semi-
inner products [15] which may be modified according to the ideas of Lumer [12] ,
[11] , Nath [14] , Bognár [2] , Antoine and Grossmann [1] and Drygas [9] .

Theorem 2.3. If Q is a conjugate-symmetric function of X 2 to C such that Q
is additive in its first (second) variable, then Q is a generalized semi-inner product
on X with several useful additional properties.

Proof. By the conjugate-symmetry of Q, for any x, y ∈ X, we have

Q (y, x) = Q (x, y) .

Hence, in particular, it clear that

Q (x, x) = Q (x, x) , and thus Q (x, x) = Q1(x, x) .

Therefore, property (a) holds for Q .

Moreover, we can also at once see that

Q1(x, y) = 2−1
(
Q (x, y) +Q (x, y)

)
= 2−1

(
Q (x, y) +Q (y, x)

)
Thus, Q1 is just the symmetric part of Q. Concerning the imaginary part (second
coordinate function) Q2 of Q , we can quite similarly see that

Q2(x, y) = (i 2)−1
(
Q (x, y)− Q (x, y)

)
= i−1 2−1

(
Q (x, y)− Q (y, x)

)
.

for all x, y ∈ X. Therefore, iQ2 is just the skew-symmetric part of Q.

Furthermore, by using the conjugate-symmetry and the additivity of Q in its
first variable, we can easily see that

Q (x, y + z) = Q (y + z, x ) = Q (y, x) + Q (z, x) =

= Q (y, x) + Q (z, x) = Q (x, y) + Q (x, z)

for all x, y, z ∈ X. Therefore, Q is additive in its second variable too. That is, Q
is actually biadditive.

Thus, for any x, y ∈ X, the first and second partial functions of Q, defined by

ϕQ(u) = Q (u, y) and ψQ(v) = Q (x, v)

for all u, v ∈ X, are additive functions of X to C .

Hence, since an additive function of one groupoid to another can easily be seen to
be N–homogeneous, it is clear that ϕQ and ψQ are N–homogeneous. Therefore,
Q , and thus its coordinate functions Q1 and Q2 are, as well, N–bihomogeneous.
Thus, in particular property (b) also holds.

Moreover, by using the biadditivity of Q and our former equality on Q1, we
can also see that

∆Q (x+ y) = Q (x+ y , x+ y ) = Q (x , x+ y ) + Q ( y , x+ y )

= Q (x, x) + Q (x, y) + Q (y, x) + Q (y, y) = ∆Q (x) + 2Q1(x, y) + ∆Q (y)
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for all x, y ∈ X. Thus, property (c) also holds for Q .

Remark 2.4. Note that if in particular X is a group, then instead of the
N–bihomogeneity of Q we can also state the Z–bihomogeneity of Q .

Therefore, if in particular X is a group, then instead of property (b) it is con-
venient to assume the Z–bihomogenity of P1.

Moreover, if P is not conjugate symmetric, then in Notation 2.1 it may be
convenient to write the symmetric part of P instead of P1.

The appropriateness of assumptions (a)–(c) is also apparent from the following

Theorem 2.5. For any n, m ∈ N and x, y ∈ X ,

(1) ∆P (nx ) = n2 ∆P (x) ,

(2) ∆P

(
n (x+ y)

)
= ∆P (nx+ n y) ,

(3) ∆P (mx + n y ) = m2∆P (x) + n2∆P (y) + 2mnP1(x, y) .

Proof. By (a) and (b), we have

∆P (nx ) = ∆P1
(nx ) = P1(nx, n x ) = nP1(x, n x )

= n2P1(x, x ) = n2∆P1
(x) = n2∆P (x) ,

and thus (1) is true.

To prove (2) and (3), note that by (1) and (c) we have

∆P

(
n (x+ y)

)
= n2 ∆P (x+ y) = n2 ∆P (x) + n2 ∆P (y) + 2n2 P1(x, y) .

Moreover, by (c), (1) and (b), we also have

∆P (mx+ n y) = ∆P (mx) + ∆P (nx) + 2P1(mx, n y)

= m2 ∆P (x) + n2 ∆P (y) + 2mnP1(x, y) ,

and thus in particular

∆P (nx+ n y) = n2 ∆P (x) + n2 ∆P (y) + 2n2 P1(x, y) .

Remark 2.6. If in particular P1 is symmetric, then because of (3) we can also
state that

∆P (n y + mx) = ∆P (mx + n y) .

Remark 2.7. While, if in particular X is a group and P1 is Z–bihomogeneous,
then the above equalities can also be stated for all n, m ∈ Z .

3. A generalized Schwarz inequality

Definition 3.1. For any x, y ∈ X, we define

αP (x, y) = inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
and

βP (x, y ) = inf
r∈Q+

1

m(r)n(r)
∆P

(
m (r)x + n (r) y

)
,
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where

m (r) = r n (r) with n (r) = min
{
n ∈ N : n r ∈ Z

}
.

Remark 3.2. The natural numbers n (r) and m (r) are called the smallest
denominator and the associated numerator of r ∈ Q+ , respectively.

Several remarkable properties and important applications of their obvious
extensions for r ∈ Q have been established in our former papers [4] and [5] .

For instance, it has been proved that if r = k/l , for some k ∈ Z and l ∈ N ,
then

m
(
k/l
)

= k/(k ; l) and n
(
k/l
)

= l/(k ; l) ,

where (k ; l) is the greatest common divisor of k and l . Thus, in particular m(r)
and n (r) are relatively prime in the sense that

(
m (r); n (r)

)
= 1 .

Remark 3.3. We shall soon see that the extended real number αP (x, y) can be
quite easily determined.

However, concerning βP (x, y ) , we can only note that if ∆P (mx + n y) ≥ 0
for all m, n ∈ N , with (m; n) = 1 , then βP (x, y ) ≥ 0 .

Fortunately, this simple observation will already allow us to establish some
applicable particular cases of the following generalized Schwarz inequality.

Theorem 3.4. For any x, y ∈ X, we have

βP (x, y ) ≤ αP (x, y ) + 2P1(x, y) .

Proof. By (3) in Theorem 2.5, for any r ∈ Q+ , we have

∆P (m (r)x+ n (r) y ) = m (r)2∆P (x) + n (r)2∆P (y) + 2m (r)n (r)P!(x, y) ,

and thus

1

m(r)n(r)
∆P

(
m(r)x+ n(r) y) =

m(r)

n(r)
∆P (x) +

n(r)

m(r)
∆P (y) + 2P1(x, y)

= r∆P (x) + r−1 ∆P (y) + 2P!(x, y) .

Hence, by the lower bound property of infimum, we can see that

βP (x, y) ≤ r∆P (x) + r−1 ∆P (y) + 2P1(x, y) ,

and thus
βP (x, y)− 2P1(x, y) ≤ r∆P (x) + r−1 ∆P (y)

even if βP (x, y) = −∞ .

Hence, by the maximality property of infimum, we can see that

βP (x, y)− 2P1(x, y) ≤ inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
= αP (x, y) ,

and thus the required inequality is also true. ( Namely, if βP (x, y) = −∞ , then
it trivially holds.)

From this theorem, we can immediately derive

Corollary 3.5. If x, y ∈ X such that βP (x, y ) is finite, then αP (x, y ) is also
finite and

−P1(x, y) ≤ 2−1
(
αP (x, y )− βP (x, y )

)
.

Hence, by Remark 3.3, it is clear that in particular we also have
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Corollary 3.6. If x, y ∈ X such that ∆P (mx+ n y) ≥ 0 for all m, n ∈ N with
(m; n) = 1 , then

−P1(x, y) ≤ 2−1 αP (x, y ) .

Now, by using this corollary, we can also easily prove the following

Theorem 3.7. If X is a group, ∆P is nonnegative and P1 is biodd, then for any
x, y ∈ X we have

|P1(x, y) | ≤ 2−1 αP (x, y ) .

Proof. By property (a) and the biodness of P1 , we have

∆P (−x) = P1(−x, −x) = P1(x, x) = ∆P (x)

for all x ∈ X. Therefore, ∆P is even, and thus αP is bieven.

Moreover, by the nonnegativity of ∆P and Corollary 3.6, we have

−P1(x, y) ≤ 2−1 αP (x, y )

for all x, y ∈ X.

Hence, by using the oddness of P1 and the evenness of αP in their fist arguments,
we can already see that

P1(x, y) = −P1(−x, y) ≤ 2−1 αP (−x, y ) = 2−1 αP (x, y )

also holds for all x, y ∈ X. Therefore, by the definition of the absolute value, the
required inequality is also true.

Remark 3.8. Now, to obtain some applicable particular cases of Theorem 3.7, it
is enough to compute αP (x, y ) for all x, y ∈ X.

4. The determination of αP (x, y )

To compute the values of αP , it is necessary to prove first the following

Lemma 4.1. For any x, y ∈ X, we have

αP (x, y) = inf
λ>0

(
λ∆P (x) + λ−1 ∆P (y)

)
Proof. Because of the lower bound property of infimum, we have

αP (x, y ) ≤ r∆P (x) + r−1 ∆P (y)

for all r ∈ Q+ . Hence, by using the sequential denseness of Q in R and the
sequential continuity of the operations in R , we can infer that

αP (x, y) ≤ λ∆P (x) + λ−1 ∆P (y)

also holds for all λ ∈ R+ . Therefore, by the maximality property of infimum, we
have

αP (x, y) ≤ inf
λ∈R+

(
λ∆P (x) + λ−1 ∆P (y)

)
.

Moreover, by using the inclusion Q+ ⊆ R+ and the definition of infimum, we
can also easily see that the converse inequality also holds. Therefore, the required
equality is also true.
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Remark 4.2. By using similar arguments, concerning βP (x, y ) , we can only
prove that

inf
m,n∈N

(mn)−1∆P (mx + n y ) ≤ βP (x, y )

and

βP (x, y ) = inf
{

(mn)−1∆P (mx + n y ) : m, n ∈ N , (m; n) = 1
}

for all x, y ∈ X.

Now, by using Lemma 4.1 and some basic facts from calculus, we can also easily
prove the following

Theorem 4.3. For any x, y ∈ X, we have

(1) αP (x, y) = −∞ if either ∆P (y) < 0 or ∆P (x) < 0 ,

(2) αP (x, y) = 2
√

∆P (x) ∆P (y) if ∆P (x) ≥ 0 and ∆P (y) ≥ 0 .

Proof. Here, we shall prove somewhat more than that is stated. For this, define

a = ∆P (x) , b = ∆P (y) and c = αP (x, y) .

Moreover, define
f (λ) = a λ + b λ−1

for all λ > 0 .

Then, by Lemma 4.1, we have

c = inf
λ>0

f (λ) .

Moreover, we can note that f is a differentiable function of R+ such that

f ′(λ) = a − b λ−2

for all λ > 0 . Therefore,

f ′(λ) < 0 ⇐⇒ a λ2 < b and f ′(λ) > 0 ⇐⇒ b < aλ2.

Hence, if a > 0 and b > 0 , then by defining λ0 =
√
b/a we can see that f

is strictly decreasing on ] − ∞, λ0 ] and f is strictly increasing on [λ0 , +∞[ .
Therefore,

f (λ0) = a λ0 + b λ−1
0 = 2

√
a b

is a strict global minimum of f . Thus, in particular c = 2
√
a b .

Moreover, if a = 0 and b > 0 , then we can see that f is strictly decreasing on
R+ and limλ→+∞ f (λ) = 0 . Thus, in particular c = 0 = 2

√
a b .

While, if a > 0 and b = 0 , then f is strictly increasing on R+ and limλ→0 f (λ) =

0 . Thus, in particular c = 0 = 2
√
a b .

On the other hand, if either a < 0 or b < 0 , then by not establishing the
monotonicity properties f , we only note that c = −∞ . Namely, we evidently
have

lim
λ→0

f (λ) = −∞ if b < 0 , and lim
λ→+∞

f (λ) = −∞ if a < 0 .

Thus, summarizing the above observations, we can state that

c = 2
√
a b if a ≥ 0 and b ≥ 0 , and c = −∞ if either a < 0 or b < 0 .

Therefore, the required assertions are also true.
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Remark 4.4. Now, as an immediate consequence of Theorems 3.4 and 4.3, we can
also state that if either ∆P (y) < 0 or ∆P (x) < 0 , then βP (x, y ) = −∞ also
holds.

5. The induced generalized seminorm

By Theorem 4.3, we may also naturally introduce the following

Definition 5.1. If in particular ∆P is nonnegative, then for any x ∈ X we define

p (x) =
√

∆P (x) .

Remark 5.2. The function p will be called the generalized seminorm derived
from P .

Thus, as an immediate consequence of Theorems 3.7 and 4.3, we can also state

Theorem 5.3. If X is a group, ∆P is nonnegative and P1 biodd, then for any
x, y ∈ X we have

|P1(x, y) | ≤ p (x) p (y) .

Moreover, by using Theorem 2.5, we can also easily establish the following

Theorem 5.4. If ∆P is nonnegative, then for any n, m ∈ N and x, y ∈ X we
have

(1) p (nx) = n p (x) ,

(2) p
(
n (x+ y)

)
= p (nx+ n y) ,

(3) p (mx+ n y )2 = m2p (x)2 + n2p (y)2 + 2mnP1(x, y) .

Remark 5.5. If in particular P1 is symmetric, then because of (3) we can also
state that

p (n y + mx) = p (mx + n y) .

Remark 5.6. While, if in particular X is a group and P1 is Z–bihomogeneous,
then instead of (1) we can also state that

p (nx ) = |n | p (x)

for all n ∈ Z . Moreover, the other equalities remain valid also for all n, m ∈ Z .

Now, by using Theorem 5.3 and 5.4, we can also easily prove the following

Theorem 5.7. If X is a group, ∆P is nonnegative and P1 is biodd, then for any
x, y ∈ X we have

(1) p (x+ y) ≤ p (x) + p (y) , (2) | p (x)− p (y) | ≤ p (x− y ) .

Proof. By using Theorems 5.4 and 5.3, we can see that

p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y)

≤ p (x)2 + p (y)2 + 2 p (x) p (y) =
(
p (x) + p (y)

)2
.

Therefore, by the nonnegativity of p , inequality (1) is also true.

Now, by using (1), we can also easily see that

p (x) = p (x− y + y ) ≤ p (x− y ) + p (y) and thus p (x)− p (y) ≤ p (x− y ) .
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Hence, it is clear that

−
(
p (x)− p (y)) = p (y)− p (x) ≤ p ( y − x ) = p

(
−(x− y)

)
= p (x− y ) ,

and thus (2) is also true. Namely, by the bioddness of P1 , the function ∆P is
even, and thus p is also even.

Remark 5.8. Note that in Theorems 3.7, and thus also in Theorems 5.3 and 5.7,
instead of the bioddness of P1 , it is enough to assume only that ∆P is even and
P1 is odd in its first variable.
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