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A WEAK SCHWARZ INEQUALITY FOR SEMI-INNER

PRODUCTS ON GROUPOIDS

ZOLTÁN BOROS AND ÁRPÁD SZÁZ

Abstract. By introducing appropriate notions of semi-inner products and

their induced generalized seminorms on groupoids, we shall prove a weak form

of the famous Schwarz inequality.

In case of groups, this will be sufficient to prove the subadditivity of the

induced generalized seminorms. Thus, some of the results of the theory of
inner product spaces can be extended to inner product groups.

However, in the near future, we shall only be interested in the correspon-
ding extensions of some fundamental theorems of Gy. Maksa, P. Volkmann,

A. Gilányi, J. Rätz and W. Fechner on additive and quadratic functions.

1. Introduction

By introducing appropriate notions of semi-inner products and their induced
generalized seminorms on groupoids, we shall prove a weak form of the famous
Schwarz inequality.

More concretely, if X is an additively written groupoid and P is a function of
X 2 to C such that

P (x, x) ≥ 0 , P (y, x) = P (x, y) , P (x+ y, z) = P (x, z) + P (y, z)

for all x, y, z ∈ X, then by using the notation

p (x) =
√
P (x, x)

with x ∈ X, we shall prove that

−P1 (x, y) ≤ p (x) p (y)

for all x, y ∈ X , where P1 denotes the real part, i. e., the first coordinate function
of P .

If in particular X is a group, then this weak Schwarz inequality already implies
that P1 (x, y) ≤ p (x) p (y) also holds for all x, y ∈ X. Therefore, in this impor-
tant particular case, the generalized seminorm p can be proved to be a seminorm
on X in the sense it is an even, N–homogeneous, subadditive function of X to R .

Thus, some of the results of the theory of inner product spaces can be naturally
extended to inner product groups. However, in the near future, we shall only
be interested in the corresponding extensions of some fundamental theorems of
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Maksa and Volkmann [14] , Gilányi [8] , Rätz [15] and Fechner [6] on additive
and quadratic functions.

2. Additive functions of groupoids

If X is a set, then a function + of X 2 to X is called an operation on X, and
the ordered pair X (+) = (X, +) is called a groupoid.

In the sequel, as is customary, we shall simply write X in place of X (+) . And,
for any x, y ∈ X, we shall write x+ y in place of the value + (x, y) .

Moreover, for any x ∈ X and n ∈ N , with n > 1 , we define

1x = x and nx = (n− 1)x + x .

If in particular, X is group, then for any x ∈ X and n ∈ N we may also
naturally define

0x = 0 and (−n)x = n (−x) .

A function f of one groupoid X to another Y is called additive if

f (x+ y) = f (x) + f (y)

for all x, y ∈ X.

Moreover, the function f may be naturally called N–homogeneous if it is
n–homogeneous for all n ∈ N in the sense that f (nx) = n f(x) for all x ∈ X.

Additive functions were first studied only on R or Rn ( see Kuczma [12] ) .
However, later they have also been intensively investigated on arbitrary groups
( see Stetkaer [21] ).

Some of the results obtained in groups can be naturally extended to monoids
and semigroups. In [17] and [10] , additive functions and relations were considered
on groupoids too.

For instance, by induction, we can easily prove the following

Theorem 2.1. If f is an additive function of a groupoid X to another Y , then
f is N–homogeneous.

Proof. To check this, note that if f (nx) = n f(x) holds for some x ∈ X and
n ∈ N , then we also have

f
(
(n+ 1)x

)
= f (nx+ x) = f (nx) + f (x) = n f (x) + f (x) = (n+ 1) f(x) .

Remark 2.2. If f is an additive function of a groupoid X, with zero, to a group
Y , then f is 0–homogeneous too.

Namely, in this case, we have

f (0) + f (0) = f ( 0 + 0 ) = f (0) ,

and thus f (0) = 0 . Therefore,

f (0x) = f (0) = 0 = 0 f (x)

also holds for all x ∈ X.

Now, by using the above observations and the corresponding definitions, we can
also easily prove the following
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Theorem 2.3. If f is an additive function of a group X to another Y , then f
is Z–homogeneous.

Proof. If x ∈ X, then by using Remark 2.2 we can see that

f (−x) + f (x) = f (−x+ x) = f (0) = 0 ,

and thus f (−x) = −f (x) . Now, if n ∈ N , then by using Theorem 1.1 we can
also see that

f
(

(−n)x
)

= f
(
n (−x)

)
= n f (−x) = n

(
−f (x)

)
= (−n) f (x) .

Therefore, f is also −N–homogeneous. Thus, by Theorem 2.1, the required
assertion is also true.

In addition to the above theorems, sometimes we shall also need the following

Theorem 2.4. If f is an additive function of an arbitrary groupoid X to a com-
mutative one Y , then for any x, y ∈ X we have

f (y + x) = f (x+ y) .

Proof. By the above assumptions, we evidently have

f (y + x) = f (y) + f (x) = f (x) + f (y) = f (x+ y) .

Remark 2.5. In this case, in contrast to the termilogy of Stetkaer [21, p. 315] ,
we would rather say that f is commutative.

3. Semi-inner products on groupoids

Notation 3.1. Suppose that X is a groupoid and P is a function of X 2 to C
such that, for any x, y, z ∈ X, we have

(a) P (x, x) ≥ 0 ,

(b) P (y, x) = P (x, y) ,

(c) P (x+ y, z) = P (x, z) + P (y, z) .

Remark 3.2. In this case, the function P will be called a semi-inner product
on X.

Moreover, if in particular X has a zero, then the semi-inner product P will be
called an inner product if

(d) P (x, x) = 0 implies x = 0 for all x ∈ X.

Remark 3.3. Thus, our present definition is in accordance with that of [16] , but
differs from that used by Lumer [11] and Giles [9] . ( See also Dragomir [4, p. 19]
for some further developments.)

The definition and results of the above mentioned authors allowed to carry over
some arguments in inner product spaces to those in normed spaces. While, our ones
will only allow of a similar transition from inner product spaces to inner product
groups.
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Example 3.4. If a is an additive function of X to an inner product space H and

Q (x, y) = 〈 a (x) , a (y) 〉
for all x, y ∈ X, then Q is a semi-inner product on X. Moreover, if if in particular
X is a group, then Q is an inner product if and only if a is injective.

Despite this, Q may be a rather curious function even if X = Rn H = R .
Namely, by Kuczma [12, p. 292] , there exist discontinuous, injective additive
functions of Rn to R . In the case n = 1 , by Makai [13] , Kuczma [12, p. 293]
and Baron [1] , we can say even more.

The most basic properties of the semi-inner product P can be listed in the next

Theorem 3.5. For any x, y, z ∈ X and n ∈ N , we have

(1) P (y + x, z) = P (x+ y, z) ,

(2) P (x, z + y) = P (x, y + z) ,

(3) P (x, y + z) = P (x, y) + P (x, z) ,

(4) P (nx, y ) = nP (x, y) = P (x, n y ) .

Proof. By using (b) and (c), and the additivity of complex conjugation, we can see
that (3) is true.

Thus, P is actually a biadditve function of X 2 to C . Hence, by Theorem 2.1,
it is clear that (4) is also true.

Moreover, by using (c) and (3) and the commutativity of the addition in C, we
can see that (1) and (2) are also true.

Remark 3.6. Note that if in particular X has a zero, then by Remark 2.2 we
have P (x, 0) = 0 and P (0, y) = 0 , and thus also

P (0x, y ) = 0P (x, y) = P (x, 0 y )

for all x, y ∈ X.

Moreover, if more specially is a group, then by Theorem 2.3 we have

P (k x, y ) = k P (x, y) = P (x, k y )

for all k ∈ Z and x, y ∈ X.

Remark 3.7. Note that the first and second coordinate functions P1 and P2 of
P also have the same commutativity and bilinearity properties as P .

Furthermore, by properties (a) and (b), for any x, y ∈ X we have

(1) P1 (x, x) = P (x, x) and P2(x, x) = 0 ,

(2) P1 (y, x) = P1 (x, y) and P2 (y, x) = −P2 (x, y) .

Thus, in particular P1 is also a semi-inner product on X. However, because of
its skew-symmetry, P2 cannot be a semi-inner product on X whenever P2 6= 0 .

More exactly, one can easily prove the following

Theorem 3.8. A function Q of X 2 to C is a semi-inner product if and only if
for any x, y ∈ X we have

(1) Q1 (x, x) ≥ 0 and Q2(x, x) = 0 ,
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(2) Q1 (y, x) = Q1 (x, y) and Q2 (y, x) = −Q2 (x, y) ,

(3) Qi (x+ y, z) = Qi (x, z) + Qi (y, z) for i = 1 and i = 2 .

Remark 3.9. Note that the second part of (2) implies that of (1). Moreover, the
second parts of (2) and (3) imply that P2 is additive in its second variable too.

Therefore, by the above theorem, we can also state that a function Q of X 2 to
C is a semi-inner product if and only if P1 is a semi-inner product and P2 is a
skew-symmetric and biadditive.

4. The induced generalized norm

Definition 4.1. For any x ∈ X, we define

p (x) =
√
P (x, x) .

Example 4.2. If in particular Q is as in Example 3.4, then

q (x) =
√
Q (x, x) = ‖ a (x) ‖

for all x ∈ X.

The most immediate properties of the function p can be listed in the following

Theorem 4.3. For any x, y ∈ X and n ∈ N , we have

(1) p (x) ≥ 0 ,

(2) p (nx ) = n p (x) ,

(3) p (x+ y) = p (y + x) ,

(4) p
(
n (x+ y)

)
= p (nx+ n y) ,

(5) p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ,

(6) p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y) .

Proof. To prove (5) and (6), note that by the Definition 4.1 and Remark 3.7 we
have

p (x) =
√
P1(x, x)

and

p (x+ y)2 = P1(x+ y, x+ y ) = P1 (x+ y, x) + P1 (x+ y, y )

= P1 (x, x) + P1 (y, x) + P1 (x, y) + P1 (y, y) = p (x)2 + 2P1(x, y) + p (y)2.

Hence, by the symmetry of P1 and the commutativity of the addition in R , it is
clear that (3) is also true.

Moreover, by using Theorems 4.3 and 3.5, we can see that

p
(
n (x+ y)

)2
= n2 p (x+ y)2 = n2 p (x)2 + n2 p (y)2 + 2n2 P1(x, y)

and

p (nx+ n y)2 = p (nx)2 + p (nx)2 + 2P1(nx, n y)

= n2 p (x)2 + n2 p (y)2 + 2n2 P1(x, y) .
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Therefore, p
(
n (x + y)

)2
= p (nx + n y)2 , and thus by the nonnegativity of p

(4) also holds.

Remark 4.4. If in particular X has a zero, the by Remark 3.6 we have p (0) = 0 ,
and thus also

p ( 0x ) = | 0 | p (x) and p
(

0 (x+ y)
)

= p ( 0x+ 0 y)

for all x, y ∈ X.

Moreover, if more specially X is a group, then by Remark 3.6 we have

p ( k x ) = | k | p (x) and p
(
k (x+ y)

)
= p ( k x+ k y)

for all k ∈ Z and x, y ∈ X.

5. A weak Schwarz inequality

To prove a Schwarz type inequality for P , it is convenient to start with

Lemma 5.1. For any n,m ∈ N and x, y ∈ X , we have

p (nx+ my )2 = n2 p (x)2 + m2 p (y)2 + 2nmP1(x, y) .

Proof. By Theorem 4.3 and Remark 3.7, we have

p (nx+ my )2 = p (nx)2 + p (my)2 + 2P1(nx, my)

= n2 p (x)2 + m2 p (y)2 + 2nmP1(x, y) .

Now, by using this simple lemma, we can give two different proofs for the follo-
wing theorem. The first one is more novel than the second one.

Theorem 5.2. For any x, y ∈ X, we have

−P1(x, y) ≤ p (x) p (y) .

Proof 1. From Lemma 4.1, we can see that

−2P1(x, y) ≤ (n/m) p (x)2 + (m/n) p (y)2 .

for all n, m ∈ N .

Therefore, by the definition of rational numbers, we actually have

−2P1(x, y) ≤ r p (x)2 + r−1 p (y)2

for all r ∈ Q with r > 0 .

Hence, by using that each real number is a limit of a sequence of rational numbers
and the operation in R are continuous, we can already infer that

−2P1(x, y) ≤ λ p (x)2 + λ−1 p (y)2

for all λ ∈ R with λ > 0 .

Now, by defining

f (λ) = λ p (x)2 + λ−1 p (y)2

for all λ > 0 , we can state that

−2P1(x, y) ≤ inf
λ>0

f (λ) .
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Moreover, if p (x) 6= 0 and p (y) 6= 0 , then by taking

λ0 = p (y)/p (x)

we can note that λ0 > 0 such that

f (λ0) = 2 p (x) p (y) .

Therefore,

inf
λ>0

f (λ) ≤ 2 p (x) p (y) , and thus − 2P1(x, y) ≤ 2 p (x) p (y) .

Hence, the required inequality follows.

While, if either p (x) = 0 or p (y) = 0 , then from the definition of f we can
see that

inf
λ>0

f (λ) = 0 , and thus − 2P1(x, y) ≤ 0 .

Therefore, −P1(x, y) ≤ 0 , and thus the required inequality trivially holds.

Remark 5.3. If p (x) 6= 0 and p (y) 6= 0 , then by computing f ′(λ) for all λ > 0 ,
we can prove that f (λ0) < f (λ) for all λ > 0 with λ 6= λ0 .

Proof 2. From Lemma 4.1, we can also see that

0 ≤ p (x)2 + (m/n)2 p (y)2 + 2 (m/n)P1(x, y)

for all n, m ∈ N .

Therefore, by using a similar argument as in Proof 1, we can state that

0 ≤ p (x)2 + λ2 p (y)2 + 2λP1(x, y) ,

and thus
0 ≤ p (x)2 + λP1(x, y) + λ

(
λ p (y)2 + P1(x, y)

)
for all λ > 0 .

Hence, if p (y) > 0 and P1(x, y) < 0 , then by taking λ = −P1(x, y)/p (y)2

we can see that

0 ≤ p (x)2 − P1(x, y)2/ p (y)2 , and thus P1(x, y)2 ≤
(
p (x) p (y)

)2
.

Therefore, because of |P1(x, y) | = −P1(x, y) , the required inequality is also true.

While, if p (y) = 0 and P1(x, y) < 0 , then by taking λ = −nP1(x, y) for
some n ∈ N we can see that

0 ≤ p (x)2 − 2nP1(x, y)2, and thus P1(x, y)2 ≤ p (x)2/ 2n .

Hence, by taking the limit n → ∞ , we can infer that P1(x, y) = 0 . Therefore,
the required inequality trivially holds.

Now, to complete the proof, it remains only to note that if P1(x, y) ≥ 0 , then
the required inequality is also trivially true.

From Theorem 5.2, we can easily infer the following

Corollary 5.4. If in particular X is a group, then for any x, y ∈ X, we have

|P1(x, y) | ≤ p (x) p (y) .

Proof. By Theorem 5.2 and Remarks 3.6 and 4.4, now we also have

P1(x, y) = −P1(−x, y) ≤ p (−x) p (y) = p (x) p (y) .

Therefore, the required inequality is also true.
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Remark 5.5. Note that if x, y ∈ X such that |P (x, y) | ≤ p (x) p (y) holds,
then we also have |Pi(x, y) | ≤ p (x) p (y) and hence Pi(x, y) ≤ p (x) p (y) and
−Pi(x, y) | ≤ p (x) p (y) for i = 1, 2 .

The following example shows that if in particular X is a group and P is an
R–bihomogeneous semi-inner product on X, then even the weak Scwarz inequality
−P2(x, y) ≤ p (x) p (y) need not be true.

Example 5.6. For any x, y ∈ R2, define

a (x) = x and b (y) = ( y2 , −y1) ,

and moreover

Q1(x, y) = x1 y1 and Q2(x, y) = 〈 a (x) , b (y) 〉 .
Then, Q = (Q1 , Q2) is an R–bihogeneous semi-inner product on R2 such that,
under the notation

q (x) =
√
Q (x, x)

with x ∈ R2 , even the inequality

−Q2 (x, y) ≤ q (x) q (y)

fails to hold for all x, y ∈ R2.

It is clear that Q1 is a symmetric, bilinear function of
(
R2
)2

to R . Moreover,

we can easily see that a and b are linear functions of R2 to itself. Therefore, Q2

is also a bilinear function of
(
R2
)2

to R . Hence, it is clear that Q is a bilinear

function of R2 to itself.

Moreover, since

Q2 (x, y) = 〈 a (x) , b (y) 〉 = 〈 (x1 , x2) , ( y2 , −y1) 〉 = x1y2 − x2 y1

for all x, y ∈ R2 , we can note that

Q2 (x, x) = 0 and Q2 (y, x ) = −Q2 (y, x )

for all x, y ∈ R2. Hence, it is clear that Q is an R–bihogeneous semi-inner product
on R2.

On the other hand, for instance, by taking

u = (0, 1) and v = (1, 0) ,

we can see that

q (u) q (v) = |u1 | | v1 | = 0 , but − Q2 (u, v) = u2 v1 − u1 v2 = 1 .

Remark 5.7. Note that, by making the plausible change

Q1 (x, y) = 〈x, y 〉
for all x, y ∈ R2, we could get

|Q (x, y) |2 = Q1(x, y)2 + Q2(x, y)2 = (x1 y1 + x2 y2 )2 + (x1y2 − x2 y1 )2

= (x2
1 + x2

2 ) ( y2
1 + y2

2 ) = |x |2 | y |2 = q (x)2 q (y)2 ,

and thus |Q (x, y) | = q (x) q (y) for all x, y ∈ R2.

However, it is now more important to note that, by using Corollary 5.4, we can
give two different proofs for the subadditivity of p . The first one is more novel
than the second one.
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Theorem 5.8. If in particular X is a group, then for any x, y ∈ X, we have

(1) p (x+ y) ≤ p (x) + p (y) , (2) | p (x)− p (y) | ≤ p (x− y ) .

Proof 1. By using Theorem 4.3 and the inequality P1(x, y) ≤ p (x) p (y) , we can
see that

p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ≤ p (x+ y) p (x) + p (x+ y) p (y) .

Therefore, by the nonnegativity of p , inequality (1) is also true.

Proof 2. By using Theorem 4.3 and the inequality P1(x, y) ≤ p (x) p (y) , we can
also see that

p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y)

≤ p (x)2 + p (y)2 + 2 p (x) p (y) =
(
p (x) + p (y)

)2
.

Therefore, by the nonnegativity of p , inequality (1) is also true.

Remark 5.9. Theorems 4.3 and 5.8, together with Remark 4.4, show that if in
particular X is a group, then p is already a seminorm on X in the sense it is an
even, N–homogeneous, subadditive function of X to R .

Hence, it can be easily seen that, in this case, the function d , defined by

d (x, y) = p (−x+ y )

for all x, y ∈ X, is a both left and right translation invariant semimetric on X.

In an improved and enlarged version of [2] , we shall show that, analogously
to seminorms and semimetrics derived from the usual semi-inner products on vec-
tor spaces, the generalized seminorms and semimetrics derived from semi-inner
products on groupoids and groups also have several useful additional properties.

Acknowledgement. The authors are indebted to Professors Gyula Maksa and
Jens Scwaiger for their kind helps and encouragements.
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