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GENERALIZATIONS OF AN ASYMPTOTIC STABILITY

THEOREM OF BAHYRYCZ, PÁLES AND PISZCZEK ON

CAUCHY DIFFERENCES TO GENERALIZED COCYCLES

ÁRPÁD SZÁZ

Abstract. We prove some straightforward analogues and generalizations of
a recent asymptotic stability theorem of A. Bahyrycz, Zs. Páles and M.

Piszczek on Cauchy differences to semi-cocycles and pseudo-cocycles intro-

duced in a former paper by the present author.

1. Introduction

In [5], Bahyrycz, Páles and Piszczek have proved a metric form of the following
theorem on restricted and asymptotic stabilities with mentioning only a few former
results on these stabilities.

The most closely related ones are [37, Theorem 1] of Losonczi with the same
constant 5, and the results of Jung [32] and Chung [12, 13] with some other
natural constants in the concluded estimates.

Theorem 1.1. If f is a function of an unbounded commutative preseminormed
group X to a commutative preseminormed one Y and

ε = lim sup
‖x‖∧‖y‖→∞

‖ f(x+ y )− f(x)− f(y) ‖ ,

then
‖ f(x+ y )− f(x)− f(y) ‖ ≤ 5 ε

for all x, y ∈ X.

Remark 1.2. Moreover, by taking ε > 0 and x0 ∈ X \ {0} , and defining

f(x0) = 3 ε and f(x) = ε for x ∈ X \ {x0} ,
they have also proved that 5 is the smallest possible constant in their theorem.

From Theorem 1.1, one can immediately derive

Corollary 1.3. If f is a function of an unbounded commutative preseminormed
group X to a commutative prenormed one Y such that

lim sup
‖x‖∧‖y‖→∞

‖ f(x+ y )− f(x)− f(y) ‖ = 0 ,

then f is additive. (That is, f(x+ y ) = f(x) + f(y) for all x, y ∈ X.)
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However, it is now more important to note that Bahyrycz, Páles and Piszczek, in
the proof of their [5, Theorem 1], have used, but not explicitly stated, the equality

(1) f(x+ y )− f(x)− f(y) = f(x− u) + f(u)− f(x)

+ f(y − v) + f(v)− f(y) + f(x+ y − u− v )− f(x− u)− f(y − v)

+ f(u+ v )− f(u)− f(v) + f(x+ y )− f(x+ y − u− v )− f(u+ v ) .

In a former paper [57] , by using the Cauchy difference

(2) F (x, y ) = f(x+ y )− f(x)− f(y) ,

we have noticed that, instead of equation (1), it is more convenient to consider the
equation

(3) F (x, y ) = F (u, v )− F (x− u, u)− F (y − v , v )

+ F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

Namely, thus Theorem 1.1 can be easily extended to the solutions of (3).
Moreover, we can prove that every symmetric cocycle F on X to Y is a solu-
tion of this equation.

That is, if F is a function of X 2 to Y such that F (x, y ) = F (y , x) and

(4) F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z )

for all x, y , z ∈ X, then (3) also holds for all x, y , u, v ∈ X.

It is well-known that every Cauchy–difference is a symmetric cocycle. Moreover,
Davison and Ebanks [17, Lemma 2] have proved that if F is a symmetric cocycle
on X to Y , then

(5) F (x+ y , u+ v ) = F (x+ u, y + v )

+ F (x, u) + F (y , v )− F (x, y )− F (u, v )

also holds for all x, y , u, v ∈ X.

At first seeing, I considered equations (3) and (5) to be very similar, but still
quite independent. However, Gyula Maksa, my close colleague, has noticed that
they are actually equivalent.

Namely, (5) can be immediately derived from (3) by replacing x by x+ u and
y by y + v . And conversely, (3) can be immediately derived from (5) by replacing
x by x− u and y by y − v . Thus, equation (1) is a consequence of (5) too.

Inspired by the above observations, in our former paper [57] , we have also
considered the more difficult equations

(6) F (x, y ) + F (u, y + v ) + F (x+ y , u+ v )

= F (x, u) + F (y , u+ v ) + F (x+ u, y + v ) ,

and

(7) F (x, y ) + F (x− u, u) + F (y − v , u) + F (y − v, v )

= F (u, v ) + F (u, y − v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

Note that if in particular F is symmetric, then equation (7) is equivalent to (3),
which is in turn equivalent to (5). Moreover, it can be easily shown that if F is
additive in its second variable, then equations (6) and (7) are also equivalent.
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In our former paper [57] , by using some more difficult computations, we have
also proved that equations (6) and (7) are also natural generalizations of (4) too.
Therefore, their solutions may be naturally called semi-cocycles and pseudo-cocycles,
respectively.

In the light of the above observations, it seems to be a reasonable research
program to extend some of the basic theorems on cocycles to these generalized
cocycles. And, to establish some deeper relationships among the various genera-
lizations of cocycles.

However, now we shall only prove some straightforward analogues and genera-
lizations of Theorem 1.1 to semi-cocycles and pseudo–cocycles. For instance, we
shall prove the following natural analogue of Theorem 1.1.

Theorem 1.4. If F is a semi-cocycle on an unbounded commutative presemi-
normed group X to a commutative preseminormed one Y and

ε = lim
‖z‖→∞

‖F (z) ‖ ,

then ‖F (z) ‖ ≤ 5 ε for all z ∈ X 2.

Remark 1.5. If F is a symmetric pseudo-cocycle, then the same conclusion also
holds with

8z8 = ‖ z1 ‖ ∧ ‖ z2 ‖ = min
{
‖ z1‖ , ‖ z2 , ‖

}
in place of ‖ z ‖ = ‖ z1‖ + ‖ z2 ‖ or

‖ z ‖ = ‖ z1 ‖ ∨ ‖ z2 ‖ = max
{
‖ z1‖ , ‖ z2 ‖

}
.

However, if the pseudo-cocycle F fails to be symmetric, then we have to write
7 in place of 5 in the above estimation. Thus, by letting ε = 0 , we can also at
once state

Corollary 1.6. If F is a semi-cocyle (pseudo-cocycle) on an unbounded commu-
tative preseminormed group X to a commutative prenormed one Y such that

lim
‖z‖→∞

‖F (z) ‖ = 0
(

lim
8z8→∞

‖F (z) ‖ = 0
)
,

then F is identically zero. (That is, F (z) = 0 for all z ∈ X 2.)

Remark 1.7. Here, motivated by the corresponding definitions of [55, 22, 56]
and [41, 27, 11] and the proofs of our forthcoming theorems, an even subadditive
function ‖ ‖ of a group X to R is called a preseminorm on X.

Thus, under the notation ‖x ‖ = ‖ ‖ (x) with x ∈ X , we have

‖ 0 ‖ = |‖ 0 + 0 ‖ ≤ 2 ‖ 0 ‖ and ‖ 0 ‖ = ‖x+ (−x) ‖ ≤ ‖x ‖+ ‖ − x ‖ = 2 ‖x ‖

for all x ∈ X. Therefore, 0 ≤ ‖ 0 ‖ , and thus also 0 ≤ ‖x ‖ for all x ∈ X.

Moreover, by using the corresponding definitions, we can also easily see that

‖nx ‖ ≤ n ‖x ‖ and ‖ (−n)x ‖ = ‖n (−x) ‖ ≤ n ‖ − x ‖ = n ‖x ‖

for all n ∈ N and x ∈ X.

Therefore, a preseminorm ‖ ‖ on X may be naturally called a seminorm if
‖ k x ‖ = | k | ‖x ‖ for all x ∈ X and k ∈ Z\{0} . Moreover, a seminorm (presemi-
norm) ‖ ‖ on X may be naturally called a norm (prenorm) if ‖x ‖ = 0 implies
x = 0 .
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To feel the importance of seminorms, note that if in particular X is a non-trivial
seminormed group in the sense that ‖x ‖ 6= 0 for some x ∈ X, then because of
the equality ‖nx ‖ = n ‖x ‖ with n ∈ N , the seminormed group X is unbounded.

2. Analogues of Theorem 1.1 for generalized cocycles

Notation 2.1. In the sequel, we shall assume that F is a function of an unbounded,
commutative preseminormed group X to a commutative preseminormed group Y .

Remark 2.2. Note that now, by defining

(x, y) + (u, v) = (x+ u , y + v )

and ‖ (x, y ) ‖ = ‖x ‖ + ‖ y ‖ or

‖ (x, y ) ‖ = ‖x ‖ ∨ ‖ y ‖ = max
{
‖x ‖ , ‖ y ‖

}
for all x, y , u, v ∈ X, the set X 2 can also be turned into a commutative presemi-
normed group.

Now, by using a more simple argument than that used by Bahyrycz, Páles and
Piszczek in [5] , we can prove the following natural analogue of Theorem 1.1.

Theorem 2.3. If F is a semi-cocycle and

ε = lim
‖z‖→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 5 ε

for all z ∈ X 2 .

Proof. By the corresponding definitions, for any η > ε , we have

inf
r>0

sup
‖z‖>r

‖F (z ) ‖ < η .

Therefore, there exists r > 0 such that sup‖z‖>r ‖F (z ) ‖ < η , and thus

‖F (z ) ‖ < η

for all z ∈ X 2 with ‖ z ‖ > r .

Hence, since ‖ z ‖ = ‖ (z1 , z2) ‖ ≥ ‖ zi ‖ for i = 1 , 2 , it is clear that in
particular we have

‖F ( s, t) ‖ < η

for all s, t ∈ X with either ‖ s ‖ > r or ‖ t ‖ > r .

Now, by taking x, y ∈ X and using equation (6), we can see that

‖F (x, y ) ‖ = ‖F (x, u) + F (y , u+ v )− F (u, y + v )

+ F (x+ u, y + v )− F (x+ y , u+ v ) ‖
≤ ‖F (x, u) ‖ + ‖F (y , u+ v ) ‖+ ‖F (u, y + v ) ‖

+ ‖F (x+ u, y + v ) ‖ + ‖F (x+ y , u+ v ) ‖ < 5 η

whenever for instance u, v ∈ X such that

‖u ‖ > r , ‖u+ v ‖ > r , ‖x+ u ‖ > r .
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Therefore, if such u and v exist, then

‖F (x, y ) ‖ < 5 η , and thus ‖F (x, y ) ‖ ≤ 5 ε

Now, to complete the proof, it remains to show only that the required u and
v exist. For this, we can note that, because of the assumed unboundedness of X,
there exist u, v ∈ X such that

‖u ‖ > r + ‖x ‖ and ‖ v ‖ > r + ‖u ‖ .

Thus, we evidently have ‖u ‖ > r . Moreover, by using the inequality ‖ s + t ‖ ≥
‖ t ‖ − ‖ s ‖ , we can also see that

‖x+ u ‖ ≥ ‖u ‖ − ‖x ‖ > r + ‖x ‖ − ‖x ‖ = r

and

‖u+ v ‖ ≥ ‖ v ‖ − ‖u ‖ > r + ‖u ‖ − ‖u ‖ = r .

From the above theorem, we can immediately derive

Corollary 2.4. If Y is prenormed, F is a semi-cocycle and

lim
‖z‖→+∞

‖F (z) ‖ = 0 ,

then F (z) = 0 for all z ∈ X 2.

From equation (7) and the proof of Theorem 2.3, it is clear that we also have

Theorem 2.5. If F is a pseudo-cocycle and

ε = lim
‖z‖→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 7 ε

for all z ∈ X 2 .

Hence, we can immediately derive

Corollary 2.6. If Y is prenormed, F is a pseudo-cocycle and

lim
‖z‖→+∞

‖F (z) ‖ = 0 ,

then F (z) = 0 for all z ∈ X 2.

Remark 2.7. However, because of Remark 2.2, from Theorems 2.3 and 2.5 we
cannot get proper generalizations of Theorem 1.1. Therefore, in the next section
we shall prove some modification and improvement of Theorem 2.5.
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3. Proper and partial generalizations of Theorem 1.1 for
pseudo-cocycles

Remark 3.1. Because of Remark 2.7, in the sequel we shall use the quantity

8(x, y )8 = ‖x ‖ ∧ ‖ y ‖ = min
{
‖x ‖ , ‖ y ‖

}
,

for all (x, y ) ∈ X 2 instead of the usual preseminorms mentioned in Remark 2.2.

Thus, the function 8 8 is not a preseminorm on X 2. However, despite this, it
can be well used to measure the magnitude of the points of X 2.

Moreover, it can as well be used to prove the following proper and partial gene-
ralizations of Theorem 1.1 to pseudo-cocycles. The proof of the first one is quite
similar to the second one. Therefore, it will be omitted.

Theorem 3.2. If F is a symmetric pseudo-cocycle and

ε = lim
8z8→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 5 ε

for all z ∈ X 2.

Hence, we can immediately derive

Corollary 3.3. If Y is prenormed, F is a symmetric pseudo-cocycle and

lim
8z8→+∞

‖F (z) ‖ = 0,

then F (z) = 0 for all z ∈ X 2.

The proof of the following theorem is again quite similar, but a little more
readable, than the one given by Bahyrycz, Páles and Piszczek in [5] .

Theorem 3.4. If F is a pseudo-cocycle and

ε = lim
8z8→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 7 ε

for all z ∈ X 2.

Proof. By the corresponding definitions, for any η > ε , we have

inf
r>0

sup
8z8>r

‖F (z ) ‖ < η .

Therefore, there exists r > 0 such that sup8z8>r ‖F (z ) ‖ < η , and thus

‖F (z ) ‖ < η

for all z ∈ X 2 with 8 z 8 > r .

Hence, since 8z8 = 8(z1 , z2 )8 = min{ ‖ z1‖ , ‖ z2‖ } , it is clear that in
particular we have

‖F ( s, t) ‖ < η

for all s, t ∈ X with ‖ s ‖ > r and ‖ t ‖ > r .
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Now, by taking x, y ∈ X and using equation (7), we can see that

‖F (x, y ) ‖ = ‖F (u, v ) + F (u, y − v )− F (y − v , u)

− F (x− u, u)− F (y − v , v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) ‖
≤ ‖F (u, v )‖ + ‖F (u, y − v ) | + ‖F (y − v , u) ‖

‖F (x−u, u) ‖+ ‖F (y−v , v ) |+ ‖F (x−u, y−v ) ‖+ ‖F (x+y−u−v , u+v ) ‖ < 7 η

whenever u, v ∈ X such that

‖u ‖ > r , ‖ v ‖ > r , ‖x− u ‖ > r , ‖ y − v ‖ > r ,

‖u+ v ‖ > r , ‖x+ y − u− v ‖ > r .

Therefore, if such u and v exist, then

‖F (x, y ) ‖ < 7 η , and thus ‖F (x, y ) ‖ ≤ 7 ε .

Now, to complete the proof, it remains only to show that the required u and v
exist. For this, following the arguments given [5] , we can note that because of the
assumed unboundedness of X there exist u, v ∈ X such that

‖u ‖ > r + ‖x ‖ and ‖ v ‖ > r + ‖x ‖ + ‖ y ‖ + ‖u ‖ .

Thus, we evidently have ‖u ‖ > r and ‖ v ‖ > r . Moreover, by using the inequality
‖ s+ t ‖ ≥ ‖ t ‖ − ‖ s ‖ , we can also see that

‖x− u ‖ ≥ ‖u ‖ − ‖x ‖ > r + ‖x ‖ − ‖x ‖ = r ,

‖ y − v ‖ ≥ ‖ v ‖ − ‖ y ‖ > r + ‖x ‖ + ‖ y ‖ + ‖u ‖ − ‖x ‖ = r + +‖ y ‖ + ‖u ‖ ≥ r ,

and

‖u+ v ‖ ≥ ‖ v ‖ − ‖u ‖ > r + ‖x ‖ + ‖ y ‖ + ‖u ‖ − ‖u ‖ = r + ‖x ‖ + ‖ y ‖ ≥ r ,

‖x+ y − u− v ‖ ≥ ‖u+ v ‖ − ‖x+ y ‖ > r + ‖x ‖ + ‖ y ‖ − ‖x ‖ − ‖ y ‖ = r .

Namely, by ‖x ‖ + ‖ y ‖ ≥ ‖x+ y ‖ , we also have −‖x+ y ‖ ≥ −‖x ‖ − ‖ y ‖ .

From this theorem, we can immediately derive

Corollary 3.5. If Y is prenormed, F is a pseudo-cocycle and

lim
8z8→+∞

‖F (z) ‖ = 0 ,

then F (z) = 0 for all z ∈ X 2.

Remark 3.6. Recall that a Cauchy-difference is a symmetric cocycle. Moreover,
a cocycle is both a semi-cocycle and a pseudo-cocycle.

Therefore, in Theorem 3.2 and its corollary F may, in particular, be a Cauchy-
difference or a symmetric cocycle. While, in Theorems 2.3, 2.5 and 3.4 and their
corollaries, F may already be an arbitrary cocycle.



8 Á. SZÁZ

4. An application of Theorem 2.3

In this section, we shall show that [37, Theorem 1] of Losonczi can be derived
from the Cauchy-difference particular case Theorem 2.3 which is certainly more
natural, but much weaker than that of Theorem 3.2.

For this, it is convenient to prove first the following intermediate theorem which
may be of some interest for itself.

Theorem 4.1. If F is a symmetric semicocycle and ε ≥ 0 such there exists
S ⊆ X 2 such that either the domain or the range of S is a bounded subset of X
and

‖F (x, y) ‖ ≤ ε
for all (x, y ) ∈ S c , then

‖F (x, y) ‖ ≤ 5 ε

for all x, y ∈ X.

Proof. Now, by using that

(x, y ) ∈
(
S−1

)c
=⇒ (x, y ) /∈ S−1 =⇒ (y , x) /∈ S
=⇒ (y , x) ∈ S c =⇒ ‖F (y , x) ‖ ≤ ε =⇒ ‖F (x, y) ‖ ≤ ε

for all x, y ∈ X, we can see that

‖F (x, y) ‖ ≤ ε

also holds for all (x, y ) ∈ S c∪
(
S−1

)c
, and thus also for all (x, y ) ∈

(
S∩S−1

)c
.

Moreover, concerning the corresponding domains and ranges, we can see that

DS∩S−1 ⊆ DS ∩DS−1 = DS ∩RS and RS∩S−1 ⊆ RS ∩RS−1 = RS ∩DS ,

and thus

S ∩ S−1 ⊆ DS∩S−1 × RS∩S−1 ⊆
(
DS ∩RS

)2
.

Now, since either DS or RS is bounded, we can also note that DS ∩ RS is a
bounded subset of X. Therefore, there exists r > 0 such that DS ∩RS ⊂ Br(0) .
Hence, we can see that S ∩ S−1 ⊆ Br(0)2, and thus(

Br(0)c ×X
)
∪
(
X ×Br(0)c

)
=

(
Br(0)2

)c ⊆ (
S ∩ S−1

)c
.

Therefore, if x, y ∈ X such that ‖ (x, y ) ‖ > r holds with

‖ (x, y ) ‖ = ‖x ‖ ∨ ‖ y ‖ = max
{
‖x ‖ , ‖ y ‖

}
,

i. e. , either ‖x ‖ > r or ‖ y ‖ > r , then in particular we also have

(x, y ) ∈
(
S ∩ S−1

)c
, and thus ‖F (x, y) ‖ ≤ ε .

Hence, it is clear that

lim
‖z‖→+∞

‖F (z) ‖ = inf
r>0

sup
‖z‖>r

‖F (z ) ‖ ≤ ε .

Therefore, by Theorem 2.3, the required assertion is also true.

From this theorem, by using a straightforward generalization of Hyers’s theorem
[28] , we can more easily infer the following generalization of [37, Theorem 1] of
Losonczi, in which it is necessary to assume that the domain normed space is non-
trivial in the sense that it is not {0}.
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Corollary 4.2. If f is a function of X to a Banach space Z and ε ≥ 0 such that
there exists S ⊆ X 2 such that either the domain or the range of S is a bounded
subset of X and

‖ f(x+ y )− f(x)− f(y) ‖ ≤ ε

for all (x, y ) ∈ S c , then there exists a unique additive function g of X to Z such
that

‖ f(x)− g(x) ‖ ≤ 5 ε

for all x, y ∈ X.

Proof. Define

F (x, y ) = f(x+ y )− f(x)− f(y)

for all x, y ∈ X. Then, we can note that F is a symmetric cocycle such that

‖F (x, y) ‖ ≤ ε
for all (x, y ) ∈ S c. Thus, by the corresponding particular case of Theorem 4.1, we
have ‖F (x, y) ‖ ≤ 5 ε , and thus

‖ f(x+ y )− f(x)− f(y) ‖ ≤ 5 ε

for all x, y ∈ X. Hence, by a straightforward generalization of Hyers’s theorem
[28] , it is clear that the required assertion is also true.

Remark 4.3. Note that if f is an arbitrary and g is an additive function of X to
Y such that

‖ f(x)− g(x) ‖ ≤ 5 ε

for all x ∈ X, then we can only state that

‖ f(x+ y )− f(x)− f(y) ‖ = ‖ f(x, y )− g(x+ y ) + g(x)− f(x) + g(y)− f(y) ‖
≤ ‖ f(x+ y )− g(x+ y ) ‖ + ‖ g(x)− f(x) ‖ + ‖ g(y)− f(y) ‖ ≤ 15 ε

for all x, y ∈ X.

Therefore, the corresponding particular case of Theorem 4.1 is sharper than
Corollary 4.2. This clearly reveal that the corresponding theorems on restricted
stability have to split into two parts. The same idea is also apparent from the
proofs of those theorems.
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