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GALOIS AND PATAKI CONNECTIONS ON GENERALIZED
ORDERED SETS

ÁRPÁD SZÁZ

Abstract. In this paper, having in mind Galois and Pataki connections, we

establish several basic theorems on increasingly seminormal and semiregular
functions between gosets introduced by the author.

An ordered pair X (≤) = ( X , ≤ ) consisting of a set X and a relation ≤
on X is called a goset (generalized ordered set).

A function f of one goset X to another Y is called increasingly upper

g–seminormal, for some function g of Y to X, if f(x) ≤ y implies x ≤ g(y) .

While, the function f is called increasingly upper ϕ–semiregular, for some
function ϕ of X to itself, if f(u) ≤ f(v) implies u ≤ ϕ(v) for all u, v ∈ X.

The increasingly lower seminormal (semiregular) functions are defined by

the reverse implications. Moreover, a function is called increasingly normal
(regular) if it is both increasingly upper and lower semminormal (semiregular).

The results obtained extend and supplement several former results of O. Ore

and the present author on Galois and Pataki connections. Namely, the pairs

(f, g ) and (f, ϕ) may be called increasing Galois and Pataki connections if
the function f is increasingly g–normal and ϕ-regular, respectively.

Introduction

Ordered sets and Galois connections occur almost everywhere in mathematics
[?] . They allow of transposing problems and results from one world of our imagi-
nation to another one.

In [?] , having in mind a terminology of Birkhoff [?, p. 1] , an ordered pair
X (≤) = (X, ≤ ) consisting of a set X and a relation ≤ on X is called a goset
(generalized ordered set).

In particular, a goset X (≤) is called a proset (preordered set) if the relation ≤
is reflexive and transitive. And, a proset is X (≤) called a poset (partially ordered
set) if the relation ≤ is in addition antisymmetric.

In [?] , motivated by an ingenious observation of Schmidt [?, p. 209] a function
f of one goset X to another Y is called increasingly upper g–seminormal, for some
function g of Y to X, if f(x) ≤ y implies x ≤ g(y) for all x ∈ X and y ∈ Y .

While, motivated by a fundamental definition of Pataki [?, p. 160] , the function
f is called increasingly upper ϕ–semiregular, for some function ϕ of X into itself,
if f(u) ≤ f(v) implies u ≤ ϕ(v) for all u, v ∈ X.
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Thus, if f is increasingly upper g–seminormal, then by taking ϕ = g◦f , we can
at once see that f(u) ≤ f(v) =⇒ u ≤ g

(
f(v)

)
=⇒ u ≤ (g ◦f )(v) =⇒ u ≤ ϕ(v)

for all u, v ∈ X . Therefore, f is increasingly upper ϕ–semiregular.
The increasingly lower seminormal (semiregular) functions are defined by the

reverse implications. Moreover, a function is called increasingly normal (regular) if
it is both increasingly upper and lower semminormal (semiregular).

Now, in particular, the pairs (f, g ) and (f, ϕ) may also be naturally called
increasing Galois and Pataki connections between the gosets X and Y if the
function f is increasingly g–normal and ϕ-regular, respectively.

Moreover, we can at once see that a function f of one goset X to another Y
is increasingly lower ∆X–semiregular if and only it is increasing in the usual sense
that u ≤ v implies f(u) ≤ f(v) for all u, v ∈ X.

In this respect, it is also worth mentioning that if f is an increasingly ϕ–regular
function of one proset X to another Y , then f is increasing and ϕ is a closure
operation on X such that ϕ ◦ f ≤ f ≤ ϕ ◦ f . ( See [?] .)

Here, a function ϕ of a goset X to itself is called a closure operation if it is
increasing, extensive and lower semiidempotent in the sense that x ≤ ϕ(x) and
ϕ
(
ϕ(x)

)
≤ ϕ(x) for all x ∈ X. Thus, ϕ is idempotent if X is a poset.

The importance of regular functions is also apparent from the fact that a function
ϕ of a proset X to itself is a closure operation if and only if ϕ is increasingly ϕ–
regular. That is, u ≤ ϕ(v) is equivalent to ϕ(u) ≤ ϕ(v) for all u, v ∈ X.

In [?] , we have also proved that a function f of one proset X to another Y
is increasingly ϕ–regular if and only if ϕ is a closure operation on X such that
ϕ(u) ≤ ϕ(v) is equivalent to f(u) ≤ f(v) for all u, v ∈ X.

Several interesting characterizations of increasingly regular and normal functions
have also been established in [?, ?] . Moreover, some closely related results for
increasing functions and closure operations have also been proved in [?] .

Now, by improving and extending some of these results, we shall, for instance,
prove that for a function f of a sup–complete proset X to an arbitrary one Y ,
the following assertions are equivalent :

(1) f is increasingly normal ,

(2) f [ sup (A) ] ⊆ sup
(
f [A ]

)
for all A ⊆ X,

(3) f is increasing and sup
(
Intf (y)

)
⊂ Intf (y) for all y ∈ Y ,

(4) f is increasing and max
(
Intf (y)

)
= sup

(
Intf (y)

)
for all y ∈ Y ,

(5) f is increasing and f [ sup (A) ] ⊆ lb
(
ub

(
f [A ]

))
for all A ⊆ X,

(6) f is increasing and f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X.

Here, by definition, we have Intf (y) =
{

x ∈ X : f(x) ≤ y
}

for all y ∈ Y .
Moreover, it is noteworthy that if X and Y are supposed to be only arbitrary
gosets, then (1) already implies the second statement of (6).

In [?] , for a function f of one goset X to another, we could only prove that f
is increasing if and only if f [ ub(A) ] ⊆ ub

(
f [A ]

)
for all A ⊆ X. Moreover, if f

is increasing, then lb
(
ub

(
f [A ]

))
⊆ lb (f [ ub(A)]) for all A ⊆ X.



GALOIS AND PATAKI CONNECTIONS 3

At the end of this paper, we shall also offer some natural generalizations of
increasingly seminormal functions on posets to relations on relator spaces of the
form (X, Y )(R) , where R is a family of relations on X to Y .

1. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊂ X 2, with X 2 = X×X, then we may simply say that F is a relation on X.
In particular, ∆X = {(x, x) : x ∈ X } is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y ) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F , respectively. If (x, y ) ∈ F , then we may also write xF y .
Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called

the domain and range of F , respectively. If in particular DF = X, then we say
that F is a relation of X to Y , or that F is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x? and x ∗ y instead of ?(x) and ∗

(
(x, y )

)
.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
of F if f ⊆ F , i. e. , f (x) ∈ F (x) for all x ∈ DF . Thus, the Axiom of Choice
can be briefly expressed by saying that every relation has a selection.

For any relation F on X to Y , we may naturally define two set-valued functions,
F � of X to P (Y ) and F ♦ of P (X ) to P (Y ) , such that F �(x) = F (x) for all
x ∈ X and F ♦(A ) = F [A ] for all A ⊂ X.

Functions of X to P (Y ) can be identified with relations on X to Y . While,
functions of P (X ) to P (Y ) are in a sense more general objects than relations on
X to Y [?] . However, they are frequently less convenient than relations.

If F is a relation on X to Y , then F =
⋃

x∈X {x}×F (x). Therefore, the values
F (x), where x ∈ X, uniquely determine F . Thus, a relation F on X to Y can
be naturally defined by specifying F (x) for all x ∈ X.

For instance, the complement relation F c can be naturally defined such that
F c(x) = F (x)c = Y \ F (x) for all x ∈ X. The latter notation will not cause
confusions, since thus we also have F c = X×Y \ F .

Quite similarly, the inverse relation F −1 can be naturally defined such that
F −1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y . Thus, the operations c and −1 are
compatible in the sense

(
F c

)−1 =
(
F −1

)c.
Moreover, if in addition G is a relation on Y to Z, then the composition relation

G ◦ F can be naturally defined such that ( G ◦ F )(x) = G [F (x) ] for all x ∈ X.
Thus, we also have (G ◦ F ) [ A ] = G

[
F [A ]

]
for all A ⊆ X.

While, if G is a relation on Z to W , then the box product relation F � G can
be naturally defined such that (F � G)(x, z ) = F (x) × G(z) for all x ∈ X and
z ∈ Z . Thus, we have (F � G)[ A ] = G ◦A ◦ F −1 for all A ⊆ X×Z [?] .
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Hence, by taking A = {(x, z )} , and A = ∆Y if Y = Z , one can see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for arbitrary families of relations.

Now, a relation R on X may be briefly called reflexive if ∆X ⊆ R , and
transitive if R◦R ⊆ R . Moreover, R may be briefly called symmetric if R−1 ⊆ R ,
and antisymmetric if R ∩R−1 ⊆ ∆X .

Thus, a reflexive and transitive (symmetric) transitive relation may be called a
preorder (tolerance) relation. And, a symmetric (antisymmetric) preorder relation
may be called an equivalence (partial order) relation.

For instance, for A ⊆ X, the Pervin relation PA = A2 ∪ Ac×X is a preorder
relation on X [?] . While, for a pseudo-metric d on X and r > 0 , the surrounding
B d

r =
{
(x, y) ∈ X2 : d(x, y) < r

}
is a tolerance relation on X .

Moreover, we may recall that if A is a partition of X, i. e., a family of pairwise
disjoint, nonvoid subsets of X such that X =

⋃
A , then EA =

⋃
A∈A A2 is an

equivalence relation on X, which can, to some extent, be identified with A .
Finally, we note that, for any relation R on X, we define R0 = ∆X , and

Rn = R ◦Rn−1 if n ∈ N . Moreover, we also define R∞ =
⋃∞

n=0 Rn . Thus, R∞

is just the smallest preorder relation on X containing R [?] .

2. A few basic facts on generalized ordered sets

According to [?] , an ordered pair X (≤) =
(
X, ≤ ) , consisting of a set X and

a relation ≤ on X, will be called generalized ordered set, or an ordered set without
axioms. And, we shall usually write X in place of X (≤) .

In the sequel, a generalized ordered set X (≤) will, for instance, be called
reflexive if the relation ≤ is reflexive. Moreover, the generalized ordered set
X ′(≤′) = X (≤−1 ) will be called the dual of X (≤ ) .

Having in mind the terminology of Birkhoff [?, p. 1] , a generalized ordered set
may be briefly called a goset. Moreover, a preordered (partially ordered) set may
be call a proset (poset).

Thus, every set X is a poset with the identity relation ∆X . Moreover, X is a
proset with the universal relation X 2. And every subfamily of the power set P (X )
of X is a poset with the ordinary set inclusion ⊆ .

The usual definitions on posets can be naturally extended to gosets [?] . ( And,
even to arbitrary relator spaces [?] which include ordered sets [?] , context spaces [?] ,
and uniform spaces [?] as the most important particular cases.)

For instance, for any subset A of a goset X, we may naturally define

lb (A) =
{

x ∈ X : ∀ a ∈ A : x ≤ a
}

,

ub (A) =
{

x ∈ X : ∀ a ∈ A : a ≤ x
}

,

min (A) = A ∩ lb (A) , max (A) = A ∩ ub (A) ,

inf (A) = max
(
lb (A)

)
, sup (A) = min

(
ub (A)

)
.

In the sequel, by identifying singletons with their elements, we shall, for instance,
write ub(x) in place of ub ({x}) for all x ∈ X. Thus, we have

ub(x) =≤ (x) = [x , +∞ [ =
{

y ∈ X : x ≤ y
}

for all x ∈ X.
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Now, as an immediate of the corresponding definitions, we can state

Theorem 2.1. For any subset A of a goset X, we have

(1) lb (A) =
⋂

a∈A lb (a) , (2) ub (A) =
⋂

a∈A ub (a) .

Hence, it is clear that in particular we also have

Corollary 2.2. If X is a goset, then

(1) lb (∅) = X and ub (∅) = X ,

(2) lb (B ) ⊆ lb (A) and ub (B ) ⊆ ub (A) for all A ⊆ B ⊆ X .

By using Theorem 2.1, we can also easily prove the following

Theorem 2.3. If Φ is a unary operation on P(X), for some set X , such that
Φ(A) =

⋂
a∈A Φ(a) for all A ⊆ X, then there exists a relation ≤ on X such

that Φ = lb≤ ( Φ = ub≤ ) .

However, it is now more important to note that we also have the following

Theorem 2.4. For any two subsets A and B of a goset X, we have

A ⊆ lb (B ) ⇐⇒ B ⊆ ub (A) .

Proof. By the corresponding definitions, each of the above inclusions is equivalent
to the property that a ≤ b for all a ∈ A and b ∈ B , which can be briefly expressed
by writing that A×B ⊆ ≤ . ( That is, A ∈ Lb≤(B ) or B ∈ Ub≤(A) by [?] .)

Remark 2.5. The above theorem shows that

lb (A) ⊆′ B ⇐⇒ A ⊆ ub (B )

for all A, B ⊂ X.
Therefore, the set-functions lb and ub form a Galois connection between the

poset P(X) and its dual in the sense of [?, Definition 7.23] , suggested by Schmidt’s
reformulation [?, p. 209] of Ore’s definition of Galois connexions [?] .

Remark 2.6. Hence, by taking Φ = ub ◦ lb , we can easily see that

lb(A) ⊆′ lb(B ) ⇐⇒ A ⊆ Φ(B )

for all A , B ⊂ X.
Therefore, the set-functions lb and Φ form a Pataki connection between the

poset P(X) and its dual in the sense of [?, Remark 3.8] suggested by a fundamen-
tal unifying work of Pataki [?] on the basic refinements of relators studied each
separately by the present author in [?] .

By [?] , the letter fact implies that lb = lb ◦Φ , and the function Φ is a closure
operation on the poset P (X ) in the sense of [?, p. 111] . By an observation,
attributed to Dedekind by Erné [?, p. 50] , this is equivalent to the requirement
that the function Φ with itself form a Pataki connection between the poset P(X)
and itself.
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3. Some further results on gosets

Concerning minima and maxima, and infima and suprema, one can easily prove
the following theorems.

Theorem 3.1. For any subset A of a goset X, we have

(1) min(A) =
{

x ∈ A : A ⊆ ub(x)
}
, (2) max(A) =

{
x ∈ A : A ⊆ lb(x)

}
.

Remark 3.2. By this theorem, for instance, we may also naturally define

ub∗ (A) =
{

x ∈ X : A ∩ ub (x) ⊆ lb (x)
}

.

Thus, max∗ (A) = A ∩ ub∗ (A) is just the family of all maximal elements of A .

Theorem 3.3. For any subset A of a goset X, we have

(1) inf (A) = lb (A) ∩ ub
(
lb (A)

)
, (2) sup (A) = ub (A) ∩ lb

(
ub (A)

)
.

Theorem 3.4. For any subset A of a goset X, we have

(1) inf (A) = sup
(
lb (A)

)
, (2) sup (A) = inf

(
ub (A)

)
,

(3) min (A) = A ∩ inf (A) , (4) max (A) = A ∩ sup (A) .

Theorem 3.5. Under the notation Φ = min , max , inf , or sup , for any subset
A of an antisymmetric goset X, we have card

(
Φ (A)

)
≤ 1 .

Remark 3.6. Conversely, one can also easily see that if X is a reflexive goset
such that card

(
Φ (A)

)
≤ 1 for all A ⊆ X, with card (A) = 2 , then X is anti-

symmetric.
In [?] , by using the notation L = {A ⊆ X : A ⊆ lb(A)} , we have first

proved that a reflexive goset X is antisymmetric if and only if card(A) ≤ 1 for
all A ∈ L .

Definition 3.7. A goset X is called inf–complete ( sup–complete) if inf (A) 6= ∅
( sup(A) 6= ∅ ) for all A ⊆ X.

Remark 3.8. Quite similarly, a goset X may, for instance, be also naturally called
min–complete if min(A) 6= ∅ for all nonvoid subset A of X.

Thus, the set N of all natural numbers is min– , but not inf–complete. While,
the extended real line R = R ∪ {−∞ , +∞} is inf– , but not min–complete.

Now, as an immediate consequence of Theorem 3.4, we can state the following
straightforward extension of [?, Theorem 3, p. 112] .

Theorem 3.9. For a goset X, the following assertions are equivalent :

(1) X is inf–complete , (2) X is sup–complete .

Remark 3.10. Similar equivalences of several modified inf– and sup–completeness
properties of gosets have been established in [?] and [?] .

Definition 3.11. A goset X is called linear if for any u, v ∈ X , with u 6= v , we
have either u ≤ v or v ≤ u .

Remark 3.12. If X is a goset, then for any u, v ∈ X we write u < v if both
u ≤ v and u 6= v .

Therefore, if the goset X is linear, then for any u, v ∈ X , with u 6= v , we
actually have either u < v or v < u .
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Moreover, as a consequence of the corresponding definitions, we can also state

Theorem 3.13. For a goset X, the following assertions are equivalent :

(1) X is is reflexive and linear ,

(2) for any u, v ∈ X, we have either u ≤ v or v ≤ u ,

(3) min(A) 6= ∅ ( max(A) 6= ∅ ) for all A ⊆ X with 1 ≤ card(A) ≤ 2 .

Hence, it is clear that in particular we also have

Corollary 3.14. If X is a min-complete (max-complete) goset, then X is reflexive
and linear.

The importance of reflexive, linear, and antisymmetric gosets is apparent from
the following

Theorem 3.15. (1) If X is an antisymmetric goset, then u < v implies v 6≤ u
for all u, v ∈ X,

(2) While, if X is a reflexive and linear goset, then u 6≤ v implies v < u
for all u, v ∈ X.

Proof. To check (2), note that if u 6≤ v , then by Theorem 3.13 we have v ≤ u .
Moreover, by the reflexivity of X, we also have v 6= u . Therefore, we also have
v < u .

Now, as an immediate consequence of this theorem, we can also state the follo-
wing very particular Galois-type connection.

Corollary 3.16. If X is a reflexive, linear and antisymmetric goset, then for any
u, v ∈ X we have u < v if and only if v 6≤ u .

Remark 3.17. If X (≤X ) is a goset and Y ⊆ X, then by taking ≤Y =≤X ∩Y 2 we
can at once see that Y (≤Y ) is also a goset which inherits several basic properties
of the original goset X (≤X ) .

Moreover, concerning subgosets, we can also easily prove the following

Theorem 3.18. If X is a goset and Y ⊆ X, then for any A ⊆ Y we have

(1) minY (A) = minX(A) , (2) minY (A) = minX(A) ,

(3) lbY (A) = lbX(A) ∩ Y , (4) ubY (A) = ubX(A) ∩ Y ,

(5) infX(A) ∩ Y ⊆ infY (A) , (6) supX(A) ∩ Y ⊆ supY (A) .

Proof. To check (5), note that if α ∈ infX(A) , then by Theorem 3.3 we have
α ∈ lbX(A) and α ∈ ubX

(
lbX(A)

)
. Hence, if α ∈ Y also holds, by using (3) we

can see that α ∈ lbY (A) .
Moreover, if v ∈ lbY (A) , then by using (3) we can see that v ∈ Y and

v ∈ lbX(A) . Hence, since α ∈ ubX

(
lbX(A)

)
, we can infer that v ≤ α . This

shows that α ∈ ubX

(
lbY (A)

)
. Hence, since α ∈ Y , by using (3) we can already

infer that α ∈ ubY

(
lbY (A)

)
. Thus, by Theorem 3.3, α ∈ supY (A) also holds.

Remark 3.19. In connection with (5), Tamás Glavosits, my PhD student, showed
that the corresponding equality need not be true even if X is finite poset.

For this, he took X = { a, b, c, d } , Y = X\{b} , A = Y \{a} , and considered
the preorder ≤ on X generated by the relation R = {(a, b) , (b, c) , (b, d)} .
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Thus, he could at once see that infY (A) = max
(
lbY (A)

)
= max

(
{a}

)
= {a} ,

but infX(A) = max
(
lbX(A)

)
= max

(
{a, b}

)
= {b} , and thus infX(A)∩Y = ∅ .

4. Increasing functions of one goset to another

Increasing functions are usually called isotone, monotone, or order-preserving in
algebra. Moreover, in [?, p. 186] even the extensive maps are called increasing.
However, we prefer to use a terminology of analysis [?, p. 128].

Definition 4.1. If f is a function of one goset X to another Y , then we say that :

(1) f is increasing if u ≤ v implies f(u) ≤ f(v) for all u, v ∈ X,

(2) f is strictly increasing if u < v implies f(u) < f(v) for all u, v ∈ X.

Remark 4.2. Quite similarly, the function f may be called decreasing if u ≤ v
implies f(v) ≤ f(u) for all u, v ∈ X.

Thus, we can note that f is a decreasing function of X to Y if and only if it is
an increasing function of X to the dual Y ′ of Y .

Therefore, the study of decreasing functions can be traced back to that of the
increasing ones. In [?] , by proving the following statements, we have shown that
almost the same is true in connection with the strictly increasing ones.

Theorem 4.3. For a function f of one goset X to another Y , the following
assertions hold :

(1) f is strictly increasing if f is injective and increasing ,

(2) f is injective if X is linear and f is strictly increasing .

Remark 4.4. Note that if in particular Y is refexive, then the strict increasingness
of f also implies the increasingness of f .

In [?] , concerning strictly increasing functions, we have also proved

Theorem 4.5. If f is a strictly increasing function of a linear goset X onto an
antisymmetric one Y , then f −1 is a strictly increasing function of Y onto X.

However, it is now more important to note that, by [?] , we also have

Theorem 4.6. For a function f of one goset X to another Y , the following
assertions are equivalent :

(1) f is increasing ,

(2) f [ ub(x) ] ⊆ ub
(
f(x)

)
for all x ∈ X,

(3) f [ ub(A) ] ⊆ ub
(
f [A ]

)
for all A ⊆ X.

Remark 4.7. Note that f is an increasing function of X to Y if and only if it is
an increasing function of X ′ to Y ′.

Therefore, in the above theorem we may write lb in place of ub . However,
because of Theorem 3.3 and Corollary 2.2, we cannot write sup instead of ub .

Despite this, in [?] , we could also easily prove the following

Theorem 4.8. For a function f of a reflexive goset X to an arbitrary one Y , the
following assertions are equivalent :
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(1) f is increasing ,

(2) f [max(A) ] ⊆ ub
(
f [A ]

)
for all A ⊆ X,

(3) f [max(A) ] ⊆ max
(
f [A ]

)
for all A ⊆ X,

(4) f [max(A) ] ⊆ ub
(
f [A ]

)
for all A ⊆ X with card(A) ≤ 2 .

Proof. To prove the implication (1) =⇒ (3) , note that if (1) holds, then by the
definition of maximum and Theorem 4.6 we have

f [max(A) ] = f [A ∩ ub(A) ] ⊆ f [A ] ∩ f [ ub(A) ]

⊆ f [A ] ∩ ub
(
f [A ]

)
= max

(
f [A ]

)
for all A ⊆ X even if X is not assumed to be reflexive.

Now, by using this theorem, we can also easily prove

Corollary 4.9. If f is a function on a reflexive goset X to an arbitrary one Y
such that

f [ sup (A) ] ⊆ sup
(
f [A ]

)
for all A ⊆ X with card(A) ≤ 2 , then f is already increasing.

Proof. If A is as above, then by Theorems 3.4 and 3.3 we have

f [max(A) ] ⊆ f [ sup(A) ] ⊆ sup
(
f [A ]

)
⊆ ub

(
f [A ]

)
.

Therefore, by Theorem 4.8, f is increasing.

5. Closure and interior operations on gosets

According to [?], we shall now also use the following

Definition 5.1. If ϕ is an unary operation on a goset X, then we say that :

(1) ϕ is extensive (intensive) if ∆X ≤ ϕ
(
ϕ ≤ ∆X

)
,

(2) ϕ is upper (lower) semiidempotent if ϕ ≤ ϕ2
(
ϕ2 ≤ ϕ

)
.

Remark 5.2. Moreover, ϕ may be naturally called upper (lower) semiinvolutive
if ϕ2 is extensive (intensive). That is, ∆X ≤ ϕ2 ( ϕ2 ≤ ∆X ) .

Remark 5.3. In this respect, it is also worth noticing that ϕ is upper (lower)
semiidempotent if and only if its restriction to its range is extensive (intensive).
Therefore, if ϕ is extensive (intensive), then ϕ is upper (lower) semiidempotent.

The importance of extensive functions is also quite obvious from the following
theorem of [?] .

Theorem 5.4. If ϕ is a strictly increasing operation on a min-complete, antisym-
metric goset X, then ϕ is extensive.

Remark 5.5. To feel the importance of extensive operations, it is also worth
noticing that if ϕ is an extensive operation on an antisymmetric goset, then each
maximal element x of X is already a fixed point of ϕ in the sense that ϕ(x) = x .

This fact has also been strongly emphasized by Brøndsted [?] . Moreover, fixed
point theorems for extensive maps (which are sometimes called expansive, progres-
sive, increasing, or inflationary) were also proved in [?] , [?, p. 188] , and [?] .
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The following theorem of [?] shows that, in contrast to the injective, increasing
functions the inverse of an injective, extensive operation need not be extensive.

Theorem 5.6. If ϕ is an injective and extensive operation on antisymmetric goset
X such that X = ϕ [X ] and ϕ−1 is also extensive, then ϕ = ∆X .

From this theorem, by using Theorems 4.5 and 5.4, we can immediately derive

Corollary 5.7. If ϕ is a strictly increasing operation on a min-complete, antisym-
metric goset X such that X = ϕ [X ], then ϕ = ∆X .

In general, the idempotent operations are quite different from the both upper
and lower semiidempotent ones. However, we may still naturally use the following

Definition 5.8. An increasing, extensive (intensive) operation is called a preclo-
sure (preinterior) operation. And, a lower semiidempotent (upper semiidempotent)
preclosure (preinterior) operation is called a closure (interior) operation.

Moreover, an extensive (intensive) lower semiidempotent (upper semidempotent)
operation is called a semiclosure (semiinterior) operation. While, an increasing and
upper (lower) semiidempotent operation is called an upper (lower) semimodification
operation.

Remark 5.9. Thus, ϕ is, for instance, an interior operation on a goset X if and
only if it is a closure operation on the dual X ′ of X.

Concerning closure operations, in [?] we have, for instance, proved the following
two theorems.

Theorem 5.10. If ϕ is a closure operation on a sup-complete, transitive, and
antisymmetric goset X, then for any A ⊆ X we have

ϕ
(
sup(A)

)
= ϕ

(
sup

(
ϕ [A ]

))
.

Hence, it is clear that in particular we also have the following

Corollary 5.11. Under the above conditions, for any A ⊆ X, we have

ϕ
(
sup(A)

)
= sup

(
ϕ [A ]

)
if and only if sup

(
ϕ [A ]

)
= ϕ

(
sup

(
ϕ [A ]

))
.

Theorem 5.12. If ϕ is a closure operation on a transitive goset X, and
Y = ϕ [A ] , then for any A ⊆ Y we have

ϕ [ supX(A) ] ⊆ supY (A) .

Hence, by using Definition 3.7 and Theorem 3.5, we can immediately derive

Corollary 5.13. If in addition to the above conditions, X is sup-complete and
antisymmetric, then for any A ⊆ Y we have

supY (A) = ϕ
(
supX(A)

)
.

Remark 5.14. Surprisingly, the corresponding infimum properties of closure
operations are much simpler, and do not require the transitivity of X.
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6. The induced order and interior relations

Definition 6.1. For a function f of a set X to a goset Y , we define a relation
Ordf on X such that

Ordf (u) =
{

v ∈ X : f(u) ≤ f(v)
}

for all u ∈ X. The relation Ordf will be called the natural order induced by f .

Remark 6.2. Thus, under the notation ≤f= Ordf , for any u, v ∈ X, we have
u ≤f v if and only if f(u) ≤ f(v) .

Therefore, as an immediate consequence of the corresponding definitions, we can
state the following

Theorem 6.3. If f is a function of a set X to a goset Y , then Ordf is the largest
relation on X making f to be increasing.

Proof. If ≤ is a relation on X making f to be increasing, then u ≤ v implies
f(u) ≤ f(v) implies u ≤f v for all u, v ∈ X. Therefore, ≤⊆≤f , and thus
≤⊆ Ordf is also true.

Several further basic properties of the relation Ordf have been proved in [?] .
For instance, as some immediate consequences of some slightly more general results,
we have established the following two theorems.

Theorem 6.4. If f is a function of a set X to a goset Y , then

(1) Ordf is a preorder on X if Y is a proset ,

(2) Ordf is a partial order on X if f is injective and Y is a poset .

Theorem 6.5. A function f of a goset X to a proset Y is increasing if and only
if any one of the following assertions holds :

(1) Ordf is decreasing , (2) Ordf is ascending valued ,

(3) Ord−1
f is increasing , (4) Ord−1

f is descending valued .

Remark 6.6. A relation F on a goset X to a set Y is called increasing if the
induced set-valued function F � is increasing. That is, u ≤ v implies F (u) ⊆ F (v)
for all u, v ∈ X.

While, a relation F on a set X to a goset Y is called ascending valued if the
function F � is ascending valued. That is, v ∈ F (u) and v ≤ w imply w ∈ F (u)
for all u ∈ X and w ∈ Y .

By [?] , a relation F on a goset X to a set Y is increasing if and only if its
inverse is ascending valued. And dually, a relation F on a set X to a goset Y is
descending valued if and only if its inverse is decreasing.

Definition 6.7. For any function f of a set X to a goset Y , we define a relation
Intf on Y to X such that

Intf (y) =
{

x ∈ X : f(x) ≤ y
}

for all y ∈ Y . The relation Intf will be called the proximal interior induced by f .

Remark 6.8. Note that if in particular f is a function of a power set P (X ) to a
goset Y , then by identifying singletons with their elements, we may also naturally
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define intf (y) = X ∩ Intf (y) for all y ∈ Y . Thus, intf is a relation on Y to X
which may be called the topological interior induced by f .

Note also that if in particular R is a relation on X to Y , then in accordance
with our former definitions, we have IntR = IntR♦ and intR = intR♦ = IntR� .
Therefore, we may also naturally define OrdR = OrdR♦ and ordR = OrdR� . Thus,
for instance, for any u, v ∈ X we have v ∈ ordR(u) if and only if R(u) ⊆ R(v).

Concerning the relation Intf , in [?] we have, for instance, proved the following
theorems.

Theorem 6.9. If f is a function of a set X to a goset Y , then

Ordf =
(
Intf ◦f

)−1 = f −1 ◦ Int−1
f .

Theorem 6.10. If f is a function of a set X to a goset Y , then for any y ∈ Y
and x ∈ X we have

Intf (y) = f −1
[
lb(y)

]
and Int−1

f (x) = ub
(
f(x)

)
.

Remark 6.11. In this respect, it is also worth noticing that

y ∈ ub
(
f [ Intf (y) ]

)
.

Namely, by the definition of Intf , for every x ∈ Intf (y) , we have f (x) ≤ y .

Theorem 6.12. If f is a function of a set X to a transitive goset Y , then

(1) Intf is increasing , (2) Int−1
f is ascending valued .

Remark 6.13. If in particular X is also a goset and f is increasing, then we can
also state that

(1) Int−1
f is decreasing , (2) Intf is descending valued .

However, in view of the corresponding results of Section 4, it is now more
important to note that following theorem is also true.

Theorem 6.14. If f is a function of one goset X to another Y such that

f [ sup (A) ] ⊆ lb
(
ub

(
f [A ]

))
for all A ⊆ X, then

max
(
Intf (y)

)
= sup

(
Intf (y)

)
for all y ∈ Y .

Proof. If y ∈ Y , then by Theorem 3.4 we have

max
(
Intf (y)

)
⊆ sup

(
Intf (y)

)
.

Therefore, we need actually prove only the converse inclusion.
For this, note that if x ∈ sup

(
Intf (y)

)
, then by the assumed property of f we

have
f(x) ∈ f

[
sup

(
Intf (y)

)]
⊆ lb

(
ub

(
f [ Intf (y) ]

))
.

Moreover, by Remark 6.11, we also have y ∈ ub
(
f [ Intf (y) ]

)
. Therefore, we

necessarily have f(x) ≤ y , and thus x ∈ Intf (y) . Hence, by Theorem 3.4, we can
see that

x ∈ Intf (y) ∩ sup
(
Intf (y)

)
= max

(
Intf (y)

)
.

Therefore, sup
(
Intf (y)

)
⊆ max

(
Intf (y)

)
, and thus the required equality is also

true.
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Remark 6.15. Note that, by Theorem 3.4, for a subset A of the goset X we have
max(A) = sup(A) if and only if sup(A) ⊆ A .

7. Galois type connections between gosets

In [?] , slightly extending the ideas of Ore [?] , Schmidt [?, p. 209] , Blyth
and Janowitz [?, p. 11] , and the present author [?] on Galois connections,
residuated mappings, and increasingly normal functions, we have introduced the
following

Definition 7.1. If f is a function on one goset X to another Y and g is a function
of Y to X, then we say that :

(1) f is increasingly upper g–seminormal if f(x) ≤ y implies x ≤ g(y) for
all x ∈ X and y ∈ Y ,

(2) f is increasingly lower g–seminormal if x ≤ g(y) implies f(x) ≤ y for
all x ∈ X and y ∈ Y .

Remark 7.2. Now, the function f may be naturally called increasingly g-normal
if it is both increasingly upper and lower g–seminormal.

Moreover, a function f of X to Y may, for instance, be naturally called increas-
ingly normal if it is increasingly g-normal for some function g of Y to X.

Later, we shall see that the increasingly normal functions are closely related to
the increasing ones. Therefore, in accordance with Remark 4.2, a function f of X
to Y may, for instance, be naturally called decreasingly normal if it is increasing
normal as a function of X to the dual Y ′ of Y .

In this respect, it is also worth mentioning that in [?] we have proved the fol-
lowing simple dualization principle.

Theorem 7.3. If f is an increasingly upper (lower) g–seminormal function of
one goset X to another Y , then g is an increasingly lower (upper) f–seminormal
function of Y ′ to X ′.

Proof. If f is increasingly upper g–seminormal, then by the corresponding defini-
tions it is clear that

y ≤′ f(x) =⇒ f(x) ≤ y =⇒ x ≤ g (y) =⇒ g (y) ≤′x

for all y ∈ Y and x ∈ X Therefore, g is increasingly lower f–seminormal as a
function of Y ′ to X ′.

Corollary 7.4. If f is an increasingly g–normal function of one goset X to
another Y , then g is an increasingly f–normal function of Y ′ to X ′.

Remark 7.5. By Theorem 7.3, the properties of the functions g and f ◦ g can
be immediately derived from those of f and g ◦ f . However, it is sometimes more
convenient to apply a direct proof.

In [?] , having in mind the properties of the function ϕ = g ◦ f , and slightly
extending the ideas of Pataki [?] and the present author [?] , we have also intro-
duced the following
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Definition 7.6. If f is a function on one goset X to another Y and ϕ is an unary
operation on X, then we say that :

(1) f is increasingly upper ϕ–semiregular if f(u) ≤ f(v) implies u ≤ ϕ(v)
for all u, v ∈ X,

(2) f is increasingly lower ϕ–semiregular if u ≤ ϕ(v) implies f(u) ≤ f(v)
for all u, v ∈ X.

Remark 7.7. Now, the function f may be naturally called increasingly ϕ-regular
if it is both increasingly upper and lower ϕ–semiregular.

Moreover, a function f of X to Y may, for instance, be naturally called increa-
singly regular if it is increasingly ϕ–regular for some unary operation ϕ on X.

Analogously to Remark 7.2, a function f of X to Y may, for instance, be
naturally called decreasingly regular if it is increasingly regular as a function of X
to Y ′. Unfortunately, now we do not have a counterpart of Theorem 7.3.

However, to clarify the relationship between normal and regular functions, in [?]
we have proved the following two theorems.

Theorem 7.8. If f is an increasingly upper (lower) g–seminormal function of
one goset X to another Y , then ϕ = g ◦ f is an unary operation on X such that
f is increasingly upper (lower) ϕ–semiregular.

Corollary 7.9. If f is an increasingly g–normal function of one goset X to
another Y , then ϕ = g ◦ f is an unary operation on X such that f is ϕ–regular.

Theorem 7.10. If f is an increasingly upper (lower) ϕ–semiregular function of
one goset X onto another Y and g is a function of Y to X such that ϕ = g ◦ f ,
then f is upper (lower) g–seminormal.

Proof. Suppose that x ∈ X and y ∈ Y . Then, since Y = f [X ] , there exists
v ∈ X such that y = f(v) .

Now, if f is increasingly upper ϕ–semiregular, then we can easily see that

f(x) ≤ y =⇒ f(x) ≤ f(v) =⇒ x ≤ ϕ(v)

=⇒ x ≤
(
g ◦ f )(v)

)
=⇒ x ≤ g

(
f (v)

)
=⇒ x ≤ g (y) .

Therefore, f is upper g–seminormal too.

Corollary 7.11. If f is an increasingly ϕ–regular function of one goset X onto
another Y and g is a function of Y to X such that ϕ = g ◦ f , then f is
g–normal.

Remark 7.12. By Theorem 7.8, it is clear that several properties of the increas-
ingly normal functions can be immediately derived from those of the increasingly
regular ones. Therefore, the latter ones have to studied before the former ones.

Moreover, from Theorem 7.10, we can see that the increasing regular functions
are still less general objects than the increasingly normal ones. Later, we shall see
that they are strictly between closure operations and increasingly normal functions.
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8. Some basic properties of increasingly semiregular functions

In [?], as some immediate consequences of the corresponding definitions, we have
also proved the following theorems and their corollaries.

Theorem 8.1. If f is an increasingly upper ϕ–semiregular function of an
arbitrary goset X to a reflexive one Y , then ϕ is extensive, and thus it is also
upper semiidempotent.

Proof. Because of the reflexivity of Y , for any x ∈ X, we have f(x) ≤ f(x) .
Hence, by using the assumed semiregularity of f , we can already infer that
x ≤ ϕ(x) . Therefore, ϕ is extensive, and thus by Remark 5.3 it is also upper
semiidempotent.

Corollary 8.2. If f is an increasingly upper ϕ–semiregular function of an arbit-
rary goset X to a reflexive one Y such that f is increasing, then f ≤ f ◦ ϕ .

Theorem 8.3. If f is an increasingly lower ϕ–semiregular function of a reflexive
goset X to an arbitrary one Y , then f ◦ ϕ ≤ f .

Corollary 8.4. If f is an increasingly ϕ–regular function of a reflexive goset X
to a reflexive, antisymmetric one Y such that f is increasing, then f = f ◦ ϕ .

Theorem 8.5. If f is an increasingly ϕ–regular function of a reflexive goset X
to a transitive one Y , then ϕ is lower semiidempotent.

Proof. By Theorem 8.3, we have f ◦ ϕ ≤ f . Hence, by using the corresponding
definitions, we can infer that f◦ϕ2 ≤ f◦ϕ . Now, by the transitivity of Y , it is clear
that f ◦ϕ2 ≤ f also holds. Therefore, for any x ∈ X, we have f

(
ϕ2(x)

)
≤ f(x) .

Hence, by using the increasing upper ϕ–semiregularity of f , we can already infer
that ϕ2(x) ≤ ϕ(x) .

Corollary 8.6. If f is an increasingly ϕ–regular function of a reflexive goset X
to a proset Y , then ϕ is a semiclosure operation on X.

Theorem 8.7. If f is an increasingly ϕ–regular function of a transitive goset X
to a reflexive one Y , then f is increasing, and thus f ≤ f ◦ ϕ also holds.

Proof. By Theorem 8.1, we have x ≤ ϕ(x) for all x ∈ X. Therefore, if u, v ∈ X
such that u ≤ v , then by the inequality v ≤ ϕ(v) and the transitivity of X, we
also have u ≤ ϕ(v) . Hence, by using the increasing lower ϕ–semiregularity of f ,
we can infer that f(u) ≤ f(v) . Therefore, f is increasing, and thus by Corollary
8.2 the required inequality is also true.

Corollary 8.8. If f is an increasingly ϕ–regular function of a proset X to a
reflexive, antisymmetric goset Y , then f = f ◦ ϕ .

Theorem 8.9. If f is an injective, increasingly ϕ–regular function of a reflexive
goset X to a reflexive, antisymmetric goset Y such that either f is increasing or
X is transitive, then ϕ = ∆X .

Theorem 8.10. If f is an increasingly upper ∆X–semiregular function of an
antisymmetric goset X to a reflexive goset Y , then f is injective.

Corollary 8.11. If f is an increasingly ϕ–regular function f of one reflexive,
antisymmetric goset X to another Y such that either f is increasing or X is
transitive, then f injective if and only if ϕ = ∆X .
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Theorem 8.12. If f is an increasingly ϕ–regular function of one proset X to
another Y , then ϕ is a closure operation on X.

Proof. By Corollary 8.6, we need only show that ϕ is also increasing. For this, note
that if u, v ∈ X such that u ≤ v , then by Theorem 8.7 we have f(u) ≤ f(v) .
Moreover, by Theorem 8.3, we have f

(
ϕ(u)

)
≤ f(u) . Thus, by the transiti-

vity of Y , we also have f
(
ϕ(u)

)
≤ f(v) . Hence, by using the increasing upper

ϕ–semiregularity of f , we can already infer that ϕ(u) ≤ ϕ(v) .

Theorem 8.13. If ϕ is an extensive operation on a transitive goset X, then ϕ
is increasingly upper ϕ–semiregular.

Corollary 8.14. An unary operation ϕ on a proset X is extensive if and only if
it is increasingly upper ϕ–semiregular.

Theorem 8.15. If ϕ is a lower semimodification operation on a transitive goset
X, then ϕ is increasingly lower ϕ–semiregular.

Corollary 8.16. If ϕ is a closure operation on transitive goset X, then ϕ is
increasingly ϕ–regular.

Theorem 8.17. For an unary operation ϕ on a proset X, the following assertions
are equivalent :

(1) ϕ is a closure operation , (2) ϕ is increasingly ϕ–regular ,

(3) there exists an increasingly ϕ–regular function f of X to a proset Y .

Corollary 8.18. For a function f of one proset X to another Y and an unary
operation ϕ on X, the following assertions are equivalent :

(1) f is increasingly ϕ–regular ,

(2) ϕ is a closure operation and Ordϕ = Ordf .

Remark 8.19. Note that, by the corresponding definitions, Ordϕ = Ordf means
only that, for any u, v ∈ X, we have ϕ(u) ≤ ϕ(v) if and only if f(u) ≤ f(v) .

9. Some basic properties of increasingly seminormal functions

From the corresponding results of Section 8, by using Theorems 7.8 and its
corollary, we can immediately derive the following assertions.

Theorem 9.1. If f is an increasingly upper g–seminormal function of an
arbitrary goset X to a reflexive one Y , then g ◦ f is extensive and upper semi-
idempotent.

Corollary 9.2. If f is an increasingly upper g–seminormal function of an
arbitrary goset X to a reflexive one Y such that f is increasing, then f ≤ f ◦g◦f .

Theorem 9.3. If f is an increasingly lower g–seminormal function of a reflexive
goset X to an arbitrary one Y , then f ◦ g ◦ f ≤ f .

Corollary 9.4. If f is an increasingly g–normal function of a reflexive goset X
to a reflexive, antisymmetric one Y such that f is increasing, then f = f ◦ g ◦ f .

Theorem 9.5. If f is an increasingly g–normal function of a reflexive goset X
to a transitive one Y , then g ◦ f is lower semiidempotent.
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Corollary 9.6. If f is an increasingly g–normal function of a reflexive goset X
to a proset Y , then g ◦ f is a semiclosure operation on X.

Theorem 9.7. If f is an increasingly g–normal function of a transitive goset X
to a reflexive one Y , then f is increasing and f ≤ f ◦ g ◦ f .

Corollary 9.8. If f is an increasingly g–normal function of a proset X to a
reflexive, antisymmetric goset Y , then f = f ◦ g ◦ f .

Theorem 9.9. If f is an injective, increasingly g–normal function of a reflexive
goset X to a reflexive, antisymmetric one Y such that either f is increasing or X
is transitive, then g ◦ f = ∆X , and thus g is onto X.

Now, by using Corollaries 9.4 and 9.8, we can also easily prove

Theorem 9.10. If f is an increasingly g–normal function of a reflexive goset X
onto a reflexive, antisymmetric one Y such that either f is increasing or X is
transitive, then f ◦ g = ∆Y , and thus g is injective.

Proof. By Corollaries 9.4 and 9.8, we have f
(
g
(
f(x)

))
= f(x) for all x ∈ X.

Hence, by using Y = f (X ) , we can infer that f
(
g(y)

)
= y for all y ∈ Y .

Moreover, from Theorem 8.12, by Corollary 7.9, it is clear that we also have

Theorem 9.11. If f is an increasingly g–normal function of one proset X to
another Y , then g ◦ f is a closure operation.

Now, as a partial converse to Theorems 9.1 and 9.7, we can also prove

Theorem 9.12. If f is an arbitrary function of a transitive goset X to an
arbitrary one Y and g is an increasing function of Y to X such that g ◦ f is
extensive, then f is increasingly upper g–seminormal.

Proof. If x ∈ X and y ∈ Y such that f(x) ≤ y , then by the increasingness of g
we also have

(
g ◦ f )(x) ≤ g(y) . Moreover, by the extensiveness of the operation

g ◦f , we also have x ≤ (f ◦ g )(x) . Hence, by the transitivity of X, it follows that
x ≤ g(y) . Therefore, the required assertion is also true.

From this theorem, by Theorem 9.1, it is clear that in particular we also have

Corollary 9.13. If f is an arbitrary function of a transitive goset X to a reflexive
one Y and g is an increasing function of Y to X, then g ◦ f is extensive if and
only if f is increasingly upper g–seminormal.

Finally, we note that as some immediate consequences of Theorems 9.1 and 9.12,
we can also state the following two theorems.

Theorem 9.14. If ϕ is an increasingly upper ϕ–seminormal operation on a re-
flexive goset X, then ϕ is upper semiinvolutive.

Theorem 9.15. If ϕ is an increasing, upper semiinvolutive operation on a tran-
sitive goset X, then ϕ is increasingly upper ϕ–seminormal.

Hence, by Theorem 9.7, it is clear that in particular we also have

Corollary 9.16. A unary operation ϕ on a proset X is increasingly upper
ϕ–seminormal if and only if it is increasing and upper semiinvolutive.
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10. Some further properties of increasingly seminormal functions

From the corresponding results of Section 9, by using Theorems 7.3 and its
corollary, we can immediately derive the following assertions.

Theorem 10.1. If f is an increasingly lower g–seminormal function of a
reflexive goset X to an arbitrary one Y , then f ◦ g is intensive and and lower
semiidempotent.

Proof. From Theorem 7.3, we can see that g is now an increasingly upper
f–seminormal function of Y ′ to X ′ . Moreover, we can note that X ′ is also reflex-
ive. Therefore, by Theorem 9.1, f ◦ g is an extensive and upper semiidempotent
operation on Y ′. Hence, by the corresponding definitions, it is clear f ◦ g is an
intensive and lower semiidempotent operation on Y .

Corollary 10.2. If f is an increasingly lower g–seminormal function of a
reflexive goset X to an arbitrary one Y such that g is increasing, then g◦f ◦g ≤ g .

Theorem 10.3. If f is an increasingly upper g–seminormal function of an arbit-
rary goset X to a reflexive one Y , then g ≤ g ◦ f ◦ g .

Corollary 10.4. If f is an increasingly g–normal function of a reflexive, antisym-
metric goset X to a reflexive one Y such that g is increasing, then g = g ◦ f ◦ g .

Theorem 10.5. If f is an increasingly g–normal function of a transitive goset
X to a reflexive one Y , then f ◦ g is upper semiidempotent.

Corollary 10.6. If f is an increasingly g–normal function of a proset X to a
reflexive goset Y , then f ◦ g is a semiinterior operation.

Theorem 10.7. If f is an increasingly g–normal function of a reflexive goset X
to a transitive one Y , then g is increasing and g ◦ f ◦ g ≤ g .

Corollary 10.8. If f is an increasingly g–normal function of a reflexive, anti-
symmetric goset X to a proset Y , then g = g ◦ f ◦ g .

Theorem 10.9. If f is an increasingly g–normal function of a reflexive, anti-
symmetric goset X to a reflexive one Y such that g is injective and either g is
increasing or Y is transitive, then f ◦ g = ∆Y , and thus f is onto Y .

Theorem 10.10. If f is an increasingly g–normal function of a reflexive, anti-
symmetric goset X to a reflexive one Y such that g is onto X and either g is
increasing or Y is transitive, then g ◦ f = ∆X , and thus f is injective.

Theorem 10.11. If f is an increasingly g–normal function of one proset X to
another Y , then f ◦ g is an interior operation on Y .

Theorem 10.12. If f is an increasing function of an arbitrary goset X to a
transitive one Y and g is an arbitrary function of Y to X such that f ◦ g is
intensive, then f is increasingly lower g–seminormal.

Corollary 10.13. If f is an increasing function f on a reflexive goset X to a
transitive one Y and g is an arbitrary function of Y to X, then f ◦g is intensive
if and only if f is increasingly lower g–seminormal.

Now, combining Theorems 9.12 and 10.12, we can also state
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Theorem 10.14. If f is an increasing function of one transitive goset X to
another Y and g is an increasing function of Y to X such that the operation
g ◦ f is extensive and the operation f ◦ g is intensive, then f is increasingly
g–normal.

Moreover, as an immediate consequence of Theorems 9.1, 9.7, 10.1, 10.7 and
10.14, we can also state

Theorem 10.15. For a function f on one proset X to another Y and a function
g on Y to X, the following assertions are equivalent :

(1) f is increasingly g–normal ,

(2) f and g are increasing, g ◦ f is extensive and f ◦ g is intensive .

Remark 10.16. Note that assertion (2) is just a dual of Ore’s classical definition
of Galois connexions [?].

Finally, we note that from Theorems 9.14 and 9.15, by using Theorem 7.3, we
can immediately derive the following two theorems.

Theorem 10.17. If ϕ is an increasingly lower ϕ–seminormal operation on a
reflexive goset X, then ϕ is lower semiinvolutive.

Theorem 10.18. If ϕ is an increasing, lower semiinvolutive operation on a tran-
sitive goset X, then ϕ is increasingly lower ϕ–seminormal.

Hence, it is clear that in particular we also have

Corollary 10.19. A unary operation ϕ on a proset X is increasingly lower ϕ–
seminormal if and only if it is increasing and lower semiinvolutive.

11. Characterizations of increasingly seminormal functions

The following theorems and their corollaries have also been proved in [?] .

Theorem 11.1. For a function f of one goset X to another Y and a function g
of Y to X, the following assertions are equivalent :

(1) lb
(
g(y)

)
⊆ Intf (y)

)
for all y ∈ Y ,

(2) f is an increasingly lower g–seminormal .

Theorem 11.2. For a function f of one goset X to another Y and a function g
of Y to X, the following assertions are equivalent :

(1) Intf (y) ⊆ lb
(
g(y)

)
for all y ∈ Y ,

(2) g(y) ∈ ub
(
Intf (y)

)
for all y ∈ Y ,

(3) f is an increasingly upper g–seminormal .

Corollary 11.3. For a function f of one goset X to another Y and a function g
of Y to X, the following assertions are equivalent :

(1) f is an increasingly g–normal , (2) Intf (y) = lb
(
g(y)

)
for all y ∈ Y .

Theorem 11.4. If f is an increasingly lower g–seminormal function of a reflexive
goset X to an arbitrary one Y , then for any y ∈ Y we have

g(y) ∈ Intf (y) .
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Corollary 11.5. If f is an increasingly g–normal function of a reflexive goset X
to an arbitrary one Y , then for any y ∈ Y we have

(1) g(y) ∈ max
(
Intf (y)

)
, (2) g(y) ∈ Intf (y) ⊆ lb

(
g(y)

)
.

Remark 11.6. Note that if in addition X is antisymmetric, then by Theorem 3.5
we may write g(y) = max

(
Intf (y)

)
in assertion (1).

Theorem 11.7. If f is an increasing function of an arbitrary goset X to a tran-
sitive one Y and g is a function of Y to X such that

g(y) ∈ Intf (y)

for all y ∈ Y , then f is increasingly lower g–seminormal.

Corollary 11.8. For an increasing function f on a reflexive goset X to a tran-
sitive one Y and an arbitrary function g of Y to X, the following assertions are
equivalent :

(1) g(y) ∈ Intf (y) for all y ∈ Y ,

(2) f is increasingly lower g–seminormal .

Theorem 11.9. For a function f of one proset to another Y and a function g of
Y to X, the following assertions are equivalent :

(1) f is increasingly g–normal ,

(2) f is increasing and g(y) ∈ max
(
Intf (y)

)
for all y ∈ Y .

Remark 11.10. Note that if in particular X is a poset, then by Theorem 3.5 we
may write g(y) = max

(
Intf (y)

)
for all y ∈ Y in assertion (2).

From the above results, we can immediately derive several characterizations of
upper and lower semiinvolutive operations.

For instance, from Theorem 11.9, by using Theorems 9.16 and 10.9, we can
immediately derive the following

Theorem 11.11. For an increasing operation ϕ on proset X, the following as-
sertions are equivalent :

(1) ϕ(x) ∈ max
(
Intϕ(x)

)
for all x ∈ X,

(2) ϕ is both upper and lower semiinvolutive .

Remark 11.12. Note that if in particular X is a poset, then in (2) we may simply
write that ϕ is involutive.

From the above results, by using the Axiom of Choice, we can also immediately
derive several useful characterizations of increasingly upper and lower seminormal
functions.

For instance, from Theorem 11.9 we can immediately derive the following

Theorem 11.13. For a function f of one proset X to another Y , the following
assertions are equivalent :

(1) f is increasingly normal ,
(2) f is increasing and max

(
Intf (y)

)
6= ∅ for all y ∈ Y .

Hence, it is clear that in particular we also have
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Corollary 11.14. For a function f of a max–complete proset X to an arbitrary
one Y , the following assertions are equivalent :

(1) f is increasingly normal ,

(2) f is increasing and F [X ] is descending in Y .

Now, more specially we can also state

Corollary 11.15. For a function f of a max–complete proset X onto an arbitrary
one Y , the following assertions are equivalent :

(1) f is increasing , (2) f is increasingly normal .

12. Some further characterizations of increasingly normal functions

In this section, we shall extend the results of [?, Section 7] to the present more
general setting of increasingly normal functions.

For this, it is convenient to start with the following striking property of increa-
singly normal functions which also fails to hold for the increasing ones.

Theorem 12.1. If f is an increasingly normal function of one goset X to another
Y , then for any A ⊆ X we have

f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
.

Proof. If y ∈ f
[
lb

(
ub(A)

) ]
, then there exists x ∈ lb

(
ub(A)

)
such that

y = f(x) . Moreover, if v ∈ ub
(
f [A ]

)
, then for any a ∈ A we have f (a) ≤ v .

Hence, by using that f is increasingly g–normal, for some function g of Y to
X , we can infer that a ≤ g (v ) . Therefore, g (v ) ∈ ub (A) , and thus because of
x ∈ lb

(
ub(A)

)
we have x ≤ g (v ) . Hence, by using the increasing g–normality of

f , we can infer that f (x) ≤ v , and thus y ≤ v . Therefore, y ∈ lb
(
ub

(
f [A ]

))
also holds.

From this theorem, by Theorem 3.3, it is clear that in particular we also have

Corollary 12.2. If f is an increasingly normal function of one goset X to another
Y , then for any A ⊆ X we have

f
[
sup(A)

]
⊆ lb

(
ub

(
f [A ]

))
.

Hence, by using Theorem 6.14, we can immediately derive the following

Corollary 12.3. If f is an increasingly normal function of one goset X to another
Y , then for any y ∈ Y we have

max
(
Intf (y)

)
= sup

(
Intf (y)

)
.

However, it is now more important to note that from Theorem 12.1, by using
Theorems 3.3 and 4.8, we can also easily get the following

Theorem 12.4. If f is an increasing, increasingly normal function of one goset
X to another Y , then for any A ⊆ X we have

f [ sup(A) ] ⊆ sup
(
f [A ]

)
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Proof. By Theorems 3.3, 4.8 and 12.1, we have

f
[
sup(A)

]
= f

[
ub(A) ∩ lb

(
ub(A)

) ]
⊆ f

[
ub(A)

]
∩ f

[
lb

(
ub(A)

) ]
⊆ ub

(
f [A ]

)
∩ lb

(
ub

(
f [A ]

))
= sup

(
f [A ]

)
.

Now, as an immediate consequence of Theorems 9.7 and 12.4, we can also state

Corollary 12.5. If f is an increasingly normal function of a transitive goset X
to a reflexive one Y , then f [ sup (A) ] ⊆ sup

(
f [A ]

)
for all A ⊆ X.

Hence, by Theorem 3.5, it is clear that in particular we also have

Corollary 12.6. If f is an increasingly normal function of a sup-complete, transi-
tive goset X to a reflexive, antisymmetric one Y , then f

(
sup (A)

)
= sup

(
f [A ]

)
for all A ⊆ X.

Now, to have some some partial converses of the above results, we can also easily
prove the following

Theorem 12.7. For a function f of a sup–complete proset X to an arbitrary one
Y , the following assertions are equivalent :

(1) f is increasingly normal ,

(2) f [ sup (A) ] ⊆ sup
(
f [A ]

)
for all A ⊆ X,

(3) f is increasing and sup
(
Intf (y)

)
⊂ Intf (y) for all y ∈ Y ,

(4) f is increasing and max
(
Intf (y)

)
= sup

(
Intf (y)

)
for all y ∈ Y ,

(5) f is increasing and f [ sup (A) ] ⊆ lb
(
ub

(
f [A ]

))
for all A ⊆ X,

(6) f is increasing and f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X.

Proof. From Theorems 9.7 and 12.1, we can see that (1) implies (6). Moreover,
from Theorem 3.3, we can see that sup (A) ⊂ lb

(
ub(A) , and thus f [ sup (A) ] ⊆

f
[
lb

(
ub(A)

) ]
. Therefore, (6) also implies (5).

Furthermore, from Theorem 6.14, we can see that (5) implies (4). Moreover, if
(4) holds, then by the assumed sup-completeness of X we have max

(
Intf (y)

)
6= ∅

for all y ∈ Y . Therefore, by Theorem 11.13, assertion (1) also holds.
On the other hand, from Corollary 12.5, we can see that (1) also implies (2).

Moreover, if (2) holds, then from Corollary 4.9 and Theorem 3.3 we can see that (5)
also holds. Finally, by Theorem 3.4, it is clear that (3) and (4) are also equivalent.

Now, by using Theorem 3.5, we can easily establish the following two corollaries
of Theorem 12.7.

Corollary 12.8. For a function f of a sup–complete poset X to a proset Y , the
following assertions are equivalent :

(1) f is increasingly normal ,

(2) f
(
sup (A)

)
∈ sup

(
f [A ]

)
for all A ⊆ X,

(3) f is increasing and f
(
sup (A)

)
∈ lb

(
ub

(
f [A ]

))
for all A ⊆ X.
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Corollary 12.9. For a function f of a sup–complete proset X to a poset Y , the
following assertions are equivalent :

(1) f is increasingly normal ,

(2) f [ sup (A) ] = sup
(
f [A ]

)
for all A ⊆ X.

Remark 12.10. Note that, if in addition X is also a poset, then by Theorem 3.5
we may again write f

(
sup (A)

)
in place of f [ sup (A) ] .

13. Characterizations of increasingly semiregular functions

The following theorems and its corollaries have also been proved in [?] .

Theorem 13.1. For a function f of one goset X to another Y and a unary
operation ϕ on X, the following assertions are equivalent :

(1) lb
(
ϕ(x)

)
⊆ Ord−1

f (x) for all x ∈ X,

(2) f is increasingly lower ϕ–semiregular .

Theorem 13.2. For a functions f of one goset X to another Y and a unary
operation ϕ on X, the following assertions are equivalent :

(1) Ord−1
f (x) ⊆ lb

(
ϕ(x)

)
for all x ∈ X,

(2) ϕ(x) ∈ ub
(
Ord−1

f (x)
)

for all x ∈ X;

(3) f is increasingly upper ϕ–semiregular .

Corollary 13.3. For a functions f of one goset X to another Y and a unary
operation ϕ on X, the following assertions are equivalent :

(1) f is increasingly ϕ–regular , (2) Ord−1
f (x) = lb

(
ϕ(x)

)
for all x ∈ X.

Theorem 13.4. If f is an increasingly lower ϕ–semiregular function of a reflexive
goset X to an arbitrary one Y , then for any x ∈ X we have

ϕ(x) ∈ Ord−1
f (x) .

Corollary 13.5. If f is an increasingly ϕ–regular function of a reflexive goset X
to an arbitrary one Y , then for any x ∈ X we have

(1) ϕ(x) ∈ max
(
Ord−1

f (x)
)
, (2) ϕ(x) ∈ Ord−1

f (x) ⊆ lb
(
ϕ(x)

)
.

Remark 13.6. Note that if in addition X is antisymmetric, then by Theorem 3.5
we may write ϕ(x) = max

(
Ord−1

f (x)
)

in assertion (2).

Theorem 13.7. If f is an increasing function of an arbitrary goset X to a tran-
sitive one Y and ϕ is a unary operation on X such that

ϕ(x) ∈ Ord−1
f (x)

for all x ∈ X, then f is increasingly lower ϕ–semiregular.

Corollary 13.8. For an increasing function f of a reflexive goset X to a transitive
one Y and a unary operation ϕ on X, the following assertions are equivalent :

(1) ϕ(x) ∈ Ord−1
f (x) for all x ∈ X,

(2) f is increasingly lower ϕ–semiregular .
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Theorem 13.9. For a function f of one proset X to another Y and a unary
operation ϕ on X, the following assertions are equivalent :

(1) f is increasingly ϕ–regular ,

(2) f is increasing and ϕ(x) ∈ max
(
Ord−1

f (x)
)

for all x ∈ X.

Remark 13.10. Note that if in particular X is a poset, then by Theorem 3.5 we
may write ϕ(x) = max

(
Ord−1

f (x)
)

in assertion (2).

From the above results, by using the Axiom of Choice, we can immediately
derive several useful characterizations of increasingly lower and upper semiregular
functions.

For instance, from Theorem 13.9, it is clear that we have the following

Theorem 13.11. For a function f of one proset X to another Y , the following
assertions are equivalent :

(1) f is increasingly regular ,

(2) f is increasing max
(
Ord−1

f (x)
)
6= ∅ for all x ∈ X.

Now, by using Corollary 7.9 and Theorems 13.11 and 11.13, we can also prove

Corollary 13.12. For a function f of one proset X onto another Y , the following
assertions are equivalent :

(1) f is increasingly regular , (2) f is increasingly normal.

Proof. If (1) holds, then by Theorem 13.11 we can see that f is increasing and
max

(
Ord−1

f (x)
)
6= ∅ for all x ∈ X. Moreover, by using Theorem 6.9, we can see

that

max
(
Intf

(
f(x)

))
= max

( (
Intf ◦f

)
(x)

)
= max

(
Ord−1

f (x)
)
6= ∅

for all x ∈ X. Hence, by using that Y = f [X ] , we can already infer that
max

(
Intf (y)

)
6= ∅ for all y ∈ Y . Thus, by Theorem 11.13, assertion (2) also

holds. The converse implication (2) =⇒ (1) is immediate from Corollary 7.9.

By using this corollary, from the results of Section 12 we can immediately derive
some useful supremum properties of increasingly regular functions.

For instance, from Theorem 12.7, by using Corollary 13.12 and Theorem 6.9, we
can immediately derive the following partial generalization of [?, Corollary 7.2] .

Theorem 13.13. For a function f of a sup–complete proset X to an arbitrary
one Y , under the notation Z = f [X ] , the following assertions are equivalent :

(1) f is increasingly regular ,

(2) f [ sup(A) ] ⊆ supZ

(
f [A ]

)
for all A ⊆ X,

(3) f is increasing and sup
(
Ord−1

f (x)
)
⊆ Ord−1

f (x) for all x ∈ X,

(4) f is increasing and max
(
Ord−1

f (x)
)

= sup
(
Ord−1

f (x)
)

for all x ∈ X.

Hence, by using Theorem 8.17, we can immediately derive the following partial
generalization of Theorem 5.10.

Corollary 13.14. For a unary operation ϕ on a sup-complete proset X, under
the notation Y = ϕ [X ] , the following assertions are equivalent :
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(1) ϕ is a closure operation ,

(2) ϕ [ sup(A) ] ⊆ supY

(
ϕ [A ]

)
for all A ⊆ X,

(3) ϕ is increasing and sup
(
Ord−1

ϕ (x)
)
⊆ Ord−1

ϕ (x) for all x ∈ X,

(4) ϕ is increasing and max
(
Ord−1

ϕ (x)
)

= sup
(
Ord−1

ϕ (x)
)

for all x ∈ X.

Remark 13.15. Note that if in particular X is a sup-complete poset, then in (2)
we may simply write ϕ

(
sup(A)

)
= supY

(
ϕ [A ]

)
.

14. Directions to some further reasonable investigations

The results of this paper can also be generalized to relator spaces of the form
(X, Y )(R) =

(
(X, Y ), R

)
, where X and Y are sets and R is a relator (family of

relations) on X to Y . ( For the origins of these concepts, see [?] and the references
therein.)

Note that relator spaces of the simpler type X (R) = (X, X )(R) are already
substantial generalizations of ordered sets [?] and uniform spaces [?] . However,
they are insufficient to include context spaces [?, p. 17] (which are simple relator
spaces of the form

(
X, Y

)
(R) =

(
X, Y

)(
{R}

)
where R is a relation on X to

Y ) , and also to naturally express continuity properties of functions and relations
on one relator space to another [?, ?] .

If (X, Y )(R) and (Z, W )(S ) are relator spaces, and � is a direct unary
operation for relators, then according to the ideas of [?, ?] a relator F on X to
Z may, for instance, be naturally called increasingly upper �–G–seminormal, for
some relator G on W to Y , if(

S� ◦ F �
)�

⊂
((
G �

)−1

◦ R�
)�

.

That is, the pair
(
F , G

)
is upper �–semicontinuous by a straightforward gene-

ralization of [?, Definition 4.1] from relations to relators.
Here, � is a function of the class of all relator spaces such that, for any relator

R on X to Y , the value R� = R�XY = �
(
(X, Y )(R)

)
is a relator on X to Y .

Moreover, the inversion and composition for relators are defined elementwise.
Note that the inversion −1 , defined by R−1 = {R−1 : R ∈ R} for every

relator R on X to Y , is a nondirect unary operation for relators. While, the
complementation c , defined by Rc = {Rc : R ∈ R} for every relator R on X
to Y , is already a direct unary operation for relators.

Of course, if we would restrict ourselves only relator spaces of the simpler form
X (R) , then −1 would be a direct operation for relators. Moreover, the modifica-
tions ∞ and ∂ , defined by

R∞ =
{

R∞ : R ∈ R
}

and R∂ =
{

S ⊂ X 2 : S∞ ∈ R
}

for any relator R on X, would also be direct unary operations for relators.
Concerning the latter operations, it is worth noticing that ∞ is an increasingly
∂–normal function, and thus ∂∞ is a closure operation on the family of all rela-
tors on X.

However, it is now more important to note that, for instance, the proximal closure
# , defined by

R# =
{

S ⊆ X×Y : ∀ A ⊆ X : ∃ R ∈ R : R [A ] ⊆ S [A ]
}
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for every relator R on X to Y , and its dual #© = c# c are also important direct
unary operations for relators.

Namely, if R is a relator on X to Y , then by defining

LbR(B ) =
{

A ⊂ X : ∃ R ∈ R : A×B ⊂ R
}

and
IntR(B ) =

{
A ⊂ X : ∃ R ∈ R : R [A ] ⊂ B

}
for all B ⊆ Y , it can be shown that S = R#

(
S = R #© )

is the largest relator
on X to Y such that IntS = IntR

(
LbS = LbR

)
.

For this, it is enough to use only some basic facts on increasingly regular functions
of one power set to another [?, ?] , and the curious fact that LbR = IntRc ◦ C ,
where C (B ) = Y \ B for all B ⊆ Y . The latter equality, proved first in [?] ,
establishes a similar connection between analysis and algebra as the famous Euler
formula does between exponential and trigonometric functions [?, p. 227] .

From the results of [?] , it has become completely clear that, to unitedly treat
the several basic structures derived from relators [?] and their associated closure
and modification operations [?] , it is necessary to investigate first increasingly
seminormal and semiregular functions of one power set to another. Therefore,
these functions have to be studied at least three stages of generality. Firstly for
posets, secondly for power sets, and thirdly for relator spaces.

To study increasingly normal and regular function of one power set P (X ) to a
goset Y , in an immediate continuation of this paper, for a function F on a power
set P (X ) to a goset Y we shall carefully investigate the set-valued functions GF

and ΦF , defined by

GF (y ) =
{

x ∈ X : F (x) ≤ y
}

and ΦF (A) =
{

x ∈ X : F (x) ≤ F (A)
}

for all y ∈ Y and A ⊆ X. ( Note that, here by identifying singletons with their
elements, we have again written x in place of {x} for all x ∈ X.) Thus, we also
have ΦF = GF ◦ F . Moreover, we may naturally look for some necessary and
sufficient conditions in order that F could be upper and lower GF –seminormal and
ΦF –semiregular, respectively.
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27. Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep.,

Inst. Math., Univ. Debrecen 2005/2, 38 pp.
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