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GENERALIZATIONS OF GALOIS AND PATAKI CONNECTIONS
TO RELATOR SPACES

ÁRPÁD SZÁZ

Abstract. In this paper, by using the elementwise composition and inversion,
and a unary operation for relators (families of binary relations), we introduce

some natural generalizations of Galois and Pataki connections from ordered

sets to relator spaces.

More concretely, if R is a relator on X to Y , S is a relator on Z to W ,

F is a relator on X to Z, G is a relator on W to Y , and � is a unary
operation for relators such that

�
S� ◦ F �

��
=
��

G �
�−1

◦ R�
��

,

then we say that the relator F is �–G–normal with respect to the relators R
and S , or that the relators F and G form a Galois connection between the
relator spaces (X, Y )(R) and (Z, W )(S ) with respect to the operation � .

By using appropriate definitions, we show that if in particular Z = W ,
and � is increasing, inversion and composition compatible, then under the

notation Φ = G ◦ F we have
��
F�

�−1
◦ S� ◦ F�

��
=
��

Φ�
�−1

◦ R�
��

.

This can be expressed by saying that the relator F is �–Φ–regular with
respect to the relators R and S , or that the relators F and Φ form a Pataki

connection between the relator spaces (X, Y )(R) and Z (S ) with respect to

the operation � .

Actually, instead of the above equalities, we shall rather investigate the

corresponding inclusions since they are closely connected with the upper and
lower semicontinuities, and mild continuities of relators on one relator space

to another.

1. A few basic fats on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊂ X 2, with X 2 = X×X, then we may simply say that F is a relation on X.
In particular, ∆X = {(x, x) : x ∈ X } is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y ) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F , respectively. If (x, y ) ∈ F , then we may also write xF y .
Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called

the domain and range of F , respectively. If in particular DF = X, then we say
that F is a relation of X to Y , or that F is a non-partial relation on X to Y .
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If F is a relation on X to Y , then F =
⋃

x∈X {x}×F (x). Therefore, the values
F (x), where x ∈ X, uniquely determine F . Thus, a relation F on X to Y can
be naturally defined by specifying F (x) for all x ∈ X.

For instance, the complement relation F c of F can be naturally defined such
that F c(x) = F (x)c = Y \ F (x) for all x ∈ X. And, the inverse relation F −1 of
F can be naturally defined such that F −1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .

Moreover, if in addition G is a relation on Y to Z, then the composition relation
G ◦F of G and F can be naturally defined such that (G ◦F )(x) = G [F (x) ] for
all x ∈ X. Thus, we also have ( G ◦ F ) [A ] = G [F [A ] ] for all A ⊂ X.

Now, a relation F on X may, for instance, be called reflexive if ∆X ⊂ F , and
transitive if F ◦ F ⊂ F . Moreover, F may be called symmetric if F −1 ⊂ F , and
antisymmetric if F ∩ F −1 ⊂ ∆X .

Thus, a reflexive and transitive (symmetric) transitive relation may be called a
preorder (tolerance) relation. And, a symmetric (antisymmetric) preorder relation
may be called an equivalence (partial order) relation.

For instance, for any A ⊂ X, the Pervin relation RA = A2 ∪ Ac×X is a
preorder relation on X. While, for any pseudo-metric d on X and r > 0 , the
surrounding B d

r =
{
(x, y) ∈ X2 : d(x, y) < r

}
is a tolerance relation on X.

Note that if F is a symmetric relation on X, then F−1 = F , but F need not
be involutive in the sense that F ◦ F = ∆X . While, if F is a preorder relation on
X, then F is already idempotent in the sense that F ◦ F = F .

For any relation F on X, we define F 0 = ∆X , and F n = F ◦F n−1 if n ∈ N .
Moreover, we also define F ∞ =

⋃∞
n=0 F n . Thus, it can be shown that F ∞ is just

the smallest preorder relation on X containing F .
In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x? and x ∗ y instead of ?(x) and ∗((x, y )) , respectively.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
of F if f ⊂ F , i. e. , f (x) ∈ F (x) for all x ∈ DF . Thus, the Axiom of Choice
can be briefly expressed by saying that every relation has a selection.

For any relation F on X to Y , we may naturally define two set-valued functions,
F � on X to P (Y ) and F ♦ on P (X ) to P (Y ) , such that F �(x) = F (x) for all
x ∈ X and F ♦( A ) = F [A ] for all A ⊂ X.

Functions on X to P (Y ) can be identified with relations on X to Y . While,
functions on P (X ) to P (Y ) are more powerful tools than relations on X to Y
[?] . However, it seems now to be more convenient to work with relations.

2. A few basic fats on relators

A family R of relations on one set X to another Y is called a relator on X to
Y . And, the ordered pair (X, Y )(R) =

(
(X, Y ), R

)
is called a relator space.

( For the origins, see [?] and the references therein.)
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If in particular R is a relator on X to itself, then we may simply say that R is a
relator on X. And, by identifying singletons with their elements, we may naturally
write X(R) in place of (X, X )(R) . Namely, (X, X ) = {{X }} .

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets and uniform spaces [?] . However, they are insufficient for
several important purposes. ( See, for instance, [?] and [?] .)

A relator R on X to Y , or a relator space (X, Y )(R) is called simple if there
exists a relation R on X to Y such that R = {R}. In this case, by identifying
singletons with their elements, we may write (X, Y )(R) in place of (X, Y )

(
{R}

)
.

Following Birkhoff [?, p. 1] , a simple relator space X (≤) may be called a
goset (generalized ordered set). Moreover, by Ganter and Wille [?, p. 17] , a simple
relator space

(
X, Y

)
(R) may be called a formal context.

A relator R on X, or a relator space X(R) , may, for instance, be naturally
called reflexive if each member of R is reflexive. Thus, we may also naturally speak
of preorder, tolerance, and equivalence relators.

For instance, for any family A of subsets of X , the family RA = {RA : A ∈ A}
is a preorder relator on X . While, for any family D of pseudo-metrics on X, the
family RD = {B d

r : r > 0 , d ∈ D} is a tolerance relator on X.
A function � of the class of all relator spaces is called a direct (indirect) unary

operation for relators if, for any relator R on X to Y , the value �
(
(X, Y )(R)

)
is

a relator on X to Y (on Y to X ). In this case, trusting to the reader’s good sense
to avoid confusions, we shall simply write R� instead of R�XY = �

(
(X, Y )(R)

)
.

An unary operation � for relators is called increasing if for any two relators R
and S on X to Y , with R ⊂ S , we have R� ⊂ S �. Moreover, the operation �
is called extensive, involutive, and idempotent if, for any relator R on X to Y , we
have R ⊂ R� , R� � = R , and R� � = R� , respectively ,

For instance, the functions c and −1 , defined by

Rc =
{

Rc : R ∈ R
}

and R−1 =
{

R−1 : R ∈ R
}

for any relator R on X to Y , are increasing, involutive operations for relators
such that

(
Rc
)−1 =

(
R−1

)c. Thus, the operation c is inversion compatible.
And, the functions ∞ and ∂ , defined by

R∞ =
{

R∞ : R ∈ R
}

and R∂ =
{

S ⊂ X 2 : S∞ ∈ R
}

for any relator R on X, are increasing, idempotent operations for relators such
that, for any relator S on X, we have R∞ ⊂ S if and only if R ⊂ S ∂ . Thus, the
operations ∞ and ∂ set up a Galois connection [?, p. 155] .

While, the functions ∗ , # , ∧ , and M , defined by

R∗ =
{

S ⊂ X×Y : ∃ R ∈ R : R ⊂ S
}

,

R# =
{

S ⊂ X×Y : ∀ A ⊂ X : ∃ R ∈ R : R [A ] ⊂ S [A ]
}

,

R∧ =
{

S ⊂ X×Y : ∀ x ∈ X : ∃ R ∈ R : R (x) ⊂ S (x)
}

,

and

RM =
{

S ⊂ X×Y : ∀ x ∈ X : ∃ u ∈ X : ∃ R ∈ R : R (u) ⊂ S (x)
}
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for any relator R on X to Y , are increasing, idempotent operations for relators
such that R ⊂ R∗ ⊂ R# ⊂ R∧ ⊂ RM. If in particular X = Y , then we can also
state that R∞ ⊂ R∗∞ ⊂ R∞∗ ⊂ R∗ .

Beside the above unary operations, we may also naturally define several natural
binary operations for relators. For instance, for suitable relators R and S , we
may naturally define

Rf S =
{

R ∩ S : R ∈ R , S ∈ S
}

and S ◦ R =
{

S ◦R : R ∈ R , S ∈ S
}

.

Thus, we evidently have
(
S ◦ R

)−1 = R−1◦ S−1 for any relators R on X to
Y and S on Y to Z . However, concerning the operation c we can only prove that
S c◦ R ⊂

((
S ◦ R

)c)∗ if DR = X for all R ∈ R , and S ◦ Rc ⊂
((
S ◦ R

)c)∗ if
RS = Z for all S ∈ S .

The latter inclusions, and the formula
(
RfR−1

)c ⊂ ( {∆Y }c
)∗ put forward by

[?, Remark 9.2] , strongly suggest that, in addition to an operation � for relators,
we have also to consider a dual operation �© = c� c .

3. Some further facts on relators

The above important unary operations for relators can be most naturally
obtained from the various structures for relators [?, ?] with the help of Pataki
and Galois connections between power sets [?, ?] .

A structure F for relators is a function of the class of all relator spaces such that,
for any relator R on X to Y , the value FR = FXY

R = F
(
(X, Y )(R)

)
belongs to

a power set depending only on X and Y .
For instance, for any relator R on X to Y , we may naturally define two relations

IntR and LbR on P(Y ) to P(X) such that

IntR(B ) =
{

A ⊂ X : ∃ R ∈ R : R [A ] ⊂ B
}

and
LbR(B ) =

{
A ⊂ X : ∃ R ∈ R : A×B ⊂ R

}
for all B ⊂ Y . Thus, IntR and LbR are elements of P

(
P (Y )× P (X )

)
.

By the the corresponding definitions, it is clear that

A×B ⊂ R ⇐⇒ ∀ a ∈ A : B ⊂ R(a) ⇐⇒ ∀ a ∈ A : R(a)c ⊂ B c

⇐⇒ ∀ a ∈ A : Rc(a) ⊂ B c ⇐⇒ Rc [A ] ⊂ B c.

Therefore, we have

A ∈ LbR(B) ⇐⇒ A ∈ IntRc( B c) ⇐⇒ A ∈
(
IntRc◦ C

)
(B ) ,

with the complement function C , defined by C (B ) = B c for all B ⊂ Y .
Hence, we can already see that

LbR = IntRc◦ C , and thus also IntR = LbRc◦ C .

Therefore, in contrast to a common belief, the topological and order theoretic struc-
tures are just as closely related to each other by the above equalities as the expo-
nential and the trigonometric functions are by the Euler formulas [?, p. 227] .
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Now, for any relator R on X to Y , we may also naturally define two relations
intR and lbR on P (Y ) to X such that, by identifying singletons with their
elements, we have

intR(B) = IntR(B) ∩ X and lbR(B) = LbR(B) ∩ X

for all B ⊂ Y . Thus, we evidently have lbR = intRc◦ C and intR = lbRc◦ C .
Moreover, for instance, it can be shown that IntR∧(B) = P

(
intR(B)

)
.

If in particular R is a relator on X, then we may also naturally define

τR =
{

A ⊂ X : A ∈ IntR(A)
}

and `R =
{

A ⊂ X : A ∈ LbR(A)
}

,

and quite similarly

TR =
{

A ⊂ X : A ⊂ intR(A)
}

and LR =
{

A ⊂ X : A ⊂ lbR(A)
}

.

However, these families are, in general, much weaker tools than the above rela-
tions. Moreover, they cannot already be expressed in terms of each others. However,
for instance, we have τR∧ = TR .

For any relator R on X to Y , we may also naturally define

ER =
{

B ⊂ Y : intR(B) 6= ∅
}

and ER =
{

B ⊂ Y : lbR(B) 6= ∅
}

.

Thus, we already have ER =
(
ERc

)c and ER =
(
ERc

)c .
The family ER of all fat sets is frequently a more important tool than the

families τR and TR of all proximally and topologically open sets. Moreover, for
instance, we have τRM = ER ∪ {∅} for any relator R on X.

By using Pataki connections, it can be shown that, for any relator R on X to
Y , S = R# is the largest relator on X to Y such that IntS = IntR . While, for
any relator R on X, S = R#∂ is the largest relator on X such that τS = τR .

Unfortunately, for the family TR of all topologically open subsets of the relator
space X (R) , there is no largest relator S on X such that TS = TR . However,
S = R∧∞ is the largest preorder relator on X such that TS = TR . ( See [?] .)

Instead of the proximal interior relation IntR suggested by Smirnov [?] one
can much better work with the coherence ralation LimR suggested by Efremović
and Šwarc [?] . This is already an almost as strong tool as the relator R itself.

If R is a relator on X to Y , then for any preordered set Γ(≤ ) , and nets
x ∈ X Γ and y ∈ Y Γ we write x ∈ LimR(y) if the net (x, y ) is eventually in each
R ∈ R in the sense that (x, y)−1 [R ] ∈ E≤ .

Thus, in contrast to IntR =
⋃

R∈R IntR, we now have LimR =
⋂

R∈R LimR.
However, by using Pataki connections, we can also show that, for any relator R on
X to Y , S = R∗ is the largest relator on X to Y such that LimS = LimR .

Now, following the ideas of Császár [?] , one may also naturally consider the
hyperrelators HR =

{
IntR : R ∈ R

}
and KR =

{
LimR : R ∈ R

}
, which are

much stronger tools than the relations IntR and LimR themselves.
In the light of the several disadvantages of the family TR, it is rather curious

that most of the works in topology and analysis have been based on open sets
suggested by Tietze [?] and standardized by Bourbaki [?] and Kelley [?] .

Moreover, it also a striking fact that, despite the results of Pervin [?] , Fletcher
and Lindgren [?], and the present author [?], generalized topologies and minimal
structures are still intensively investigated by a great number of mathematicians.
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4. Closure operations and regular structures for relators

Definition 4.1. An extensive, increasing operation is called a preclosure operation.
And, an idempotent preclosure operation is called a closure operation.

Moreover, an extensive, idempotent operation is called a semiclosure operation.
And, an increasing, idempotent operation is called a modification operation.

Remark 4.2. Note that if � is an extensive operation for relators, then � is
already lower semi-idempotent in the sense that R� ⊂ R� � for any relator R .

Definition 4.3. Let F be a structure for relators. Then, we say that :

(1) F is quasi-increasing if FR ⊂ FR for any relator R on X to Y and R ∈ R ,
(2) F is increasing if FR ⊂ FS for any two relators R and S on X to Y with

R ⊂ S ,
(3) F is union-preserving if FS

i∈I R i
=
⋃

i∈I FR i
for any family

(
R i

)
i∈I

of relators on X to Y .

Remark 4.4. Note that thus ”union-preserving” implies ”increasing” implies
”quasi-increasing”.

Theorem 4.5. For any structure F for relators, the following assertions are equi-
valent :

(1) F is union-preserving ,
(2) FR =

⋃
R∈R FR for any relator R on X to Y ,

(3) F is quasi-increasing and FR ⊂
⋃

R∈R FR for any relator R on X to Y .

Proof. To prove the implication (2) =⇒ (1) , note that if (2) holds, then F is
increasing. Therefore, for any family

(
R i

)
i∈I

of relators on X to Y , we have⋃
i∈I FR i ⊂ FS

i∈I R i
. Thus, we need only prove the converse inclusion.

For this, note that now for the relator R =
⋃

i∈I R i we have (2). Therefore, if
Ω ∈ FR , then there exists R ∈ R such that Ω ∈ FR . Moreover, there exists io ∈ I
such that R ∈ R io

. Hence, we can see that Ω ∈ FR ⊂ FR io
⊂
⋃

i∈I FR i
.

Remark 4.6. By using the corresponding definitions and Theorem 4.5, it can be
easily seen that the structures Int , Lb , int , lb , τ , ` , and E are union-preserving.
However, the increasing structures T and L are not union-preserving.

Definition 4.7. Let F be a structure and � be an operation for relators. Then,
we say that :

(1) F is upper �–semiregular if FR ⊂ FS implies R ⊂ S � for any two relators
R and S on X to Y ,

(2) F is lower �–semiregular if R ⊂ S � implies FR ⊂ FS for any two relators
R and S on X to Y .

Remark 4.8. If F is an upper �–semiregular structure for relators, then because
of the fundamental work of Pataki [?] we may also say that the pair (F , �) is an
upper Pataki connection.

Now, the structure F may be naturally called �–regular if it is both upper and
lower �–semiregular. Moreover, for instance, F may be naturally called regular if
it is �–regular for some operation � .
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Remark 4.9. In the theory of relators, Pataki connections can also be most
naturally obtained from the Galois ones [?] .

Namely, if F is a function of P(X ) to P (Y ) and G is a function of P (Y ) to
P (X) such that, for any A ⊂ X and B ⊂ Y , we have F (A) ⊂ B if and only if
A ⊂ G(B) , then for any U , V ⊂ X we have

F (U ) ⊂ F (V ) ⇐⇒ U ⊂ G
(
F (V )

)
⇐⇒ U ⊂ (G ◦ F )(V ).

Thus, in particular concerning the modification operations ∞ and ∂ considered
in Section 2, we can note that ∞ , as a structure for relators, is ∞∂–regular. By the
forthcoming Theorems 6.3 and 6.1, this will imply that ∞∂ is a closure operation
for relators such that ∞ = ∞∂∞ .

5. Operations derived from structures for relators

Definition 5.1. For any structure F for relators, we define an operation �F for
relators such that

R�F =
{

S ⊂ X×Y : FS ⊂ FR
}

for any relator R on X to Y .

Remark 5.2. Thus, for instance, if S ∈ R� Int , then IntS ⊂ IntR . Hence, since
A ∈ IntS

(
S [A ]

)
for all A ⊂ X, we can infer that A ∈ IntR

(
S [A ]

)
for all

A ⊂ X. Thus, for each A ⊂ X, there exists R ∈ R such that R [A ] ⊂ S [A ] .
Therefore, S ∈ R#.

This shows that R� Int ⊂ R# . Moreover, by using the corresponding definitions,
we can even more easily see that the converse inclusion is also true. Therefore, we
actually have R# = R� Int for any relator R , and thus # = � Int .

The appropriateness of Definition 5.1, is already apparent from the following
extensions and supplements of the corresponding results of Pataki [?] .

Theorem 5.3. If F is a structure and � is an operation for relators such that F
is �–regular, then � = �F.

Proof. By the corresponding definitions,

S ∈ R� ⇐⇒ {S} ⊂ R� ⇐⇒ F{S} ⊂ FR ⇐⇒ FS ⊂ FR ⇐⇒ S ∈ R�F

for any relator R and relation S on X to Y .

Now, as some immediate consequences of this theorem, we can also state

Corollary 5.4. If F is a structure for relators, then there exists at most one
operation � for relators such that F is �–regular.

Corollary 5.5. If F is a regular structure for relators, then � = �F is the unique
operation for relators such that F is �–regular.

Corollary 5.6. A structure F for relators is regular if and only if it is
�F–regular.

Theorem 5.7. If F is a quasi-increasing structure for relators, then

(1) F is upper �F–semiregular , (2) �F is extensive .
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Proof. If R and S are relators on X to Y such that FR ⊂ FS , then by the
quasi-increasingness of F , for any R ∈ R , we also have FR ⊂ FS . Hence, by
Definition 5.1, we can already see that R ∈ S�F . Therefore, R ⊂ S�F . Thus, by
Definition 4.7, assertion (1) is true.

Now, from the inclusion FR ⊂ FR , by using (1), we can infer that R ⊂ R�F .
Therefore, (2) is also true.

Remark 5.8. Note that if in particular the structure F is increasing, then by
Definition 5.1, the operation �F is also increasing. Therefore, by assertion (2), it
is already a preclosure operation for relators.

From the above theorem, by Corollary 5.6, it is clear that in particular we also
have

Corollary 5.9. A quasi-increasing structure F for relators is regular if and only
if it is lower �F–semiregular.

Remark 5.10. By considering the equivalence relator R =
{

X 2
}

on a set X with
card(X ) > 2 , it can be shown that, the preclosure operation �T = ∧∂ is not
idempotent despite that the structure T is increasing [?, Example 7.2] .

Moreover, it is also noteworthy that now we also have R#∂ 6= R . Thus, in
contrast to # and #∞ , the operation #∂ is already not stable. Therefore, in
our former papers, we have mostly used #∞ instead of #∂ .

Theorem 5.11. If F is an union-preserving structure for relators, then

(1) F is �F–regular , (2) �F is a closure operation .

Proof. Suppose that R and S are relators on X to Y such that R ⊂ S�F , and
Ω ∈ FR . Then, by Theorem 4.5, there exists R ∈ R such that Ω ∈ FR. Now, since
R ⊂ S�F , we also have R ∈ S�F . Hence, by Definition 5.1, we can infer that
FR ⊂ FS . Therefore, we also have Ω ∈ FS . Consequently, FR ⊂ FS . This shows
that F is lower �F–semiregular. Hence, by Theorem 5.7, we can see that (1) is
true. Assertion (2) is a consequence of (1) by the forthcoming Theorem 6.3.

Remark 5.12. By Remark 4.6, the structure Int is a union-preserving. Therefore,
by Theorem 5.11, Int is � Int–regular, and � Int is a closure operation. Moreover,
by Remark 5.2, we have # = � Int .

Therefore, the structure Int is actually #–regular, and # is a closure operation.
Thus, in particular, for any two relators R and S on X to Y , we have

IntR ⊂ IntS ⇐⇒ R ⊂ S# .

Remark 5.13. Hence, by using the equality LbR = IntRc◦ C and the corres-
ponding definitions, we can easily that

LbR ⊂ LbS ⇐⇒ IntRc◦ C ⊂ IntSc◦ C ⇐⇒ IntRc ⊂ IntSc

⇐⇒ Rc ⊂ S c# ⇐⇒ R ⊂ S c#c ⇐⇒ R ⊂ S #©

for any two relators R and S on X to Y .
Therefore, the structure Lb is #©–regular, and thus by Theorem 5.3 we

necessarily have �Lb = #© . Moreover, by Remark 4.6, the structure Lb is also
union-preserving. Hence, by Theorem 5.11, we can see that #© is also a closure
operation for relators.
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6. Some further results on regular structures

Analogously to the results of [?, ?] , we can also easily prove the following
theorems.

Theorem 6.1. If F is a �–regular structure for relators, then

(1) � is extensive , (2) F is increasing ,

(3) FR = FR� for any relator R on X to Y .

Proof. If R is a relator on X to Y , then from the inclusion R� ⊂ R� , by using
the lower �–semiregularity of F , we can infer that FR� ⊂ FR .

On the other hand, from the inclusion FR ⊂ FR , by using the upper
�–semiregularity of F , we can infer that R ⊂ R� . Therefore, (1) is true.

Now, if S is a relator on X to Y such that R ⊂ S , then by using (1) we can
see that R ⊂ S� also holds. Hence, by using the lower �–semiregularity of F ,
we can infer that FR ⊂ FS . Therefore, assertion (2) is also true.

Now, from the inclusion R ⊂ R�, by using (2), we can infer that FR ⊂ FR� .
Therefore, assertion (3) is also true.

From this theorem, by Theorem 5.11, it is clear that in particular we also have

Corollary 6.2. If F is a union-preserving structure for relators, then FR = FR�F

for any relator R on X to Y .

Theorem 6.3. For an operation � for relators, the following assertions are equi-
valent :

(1) � is self-regular , (2) � is a closure operation ,

(3) there exists at least one �–regular structure F for relators.

Proof. If (2) holds, and R is a relator on X to Y , then by the extensivity of �
we have R ⊂ R� . Therefore, if S is a relator on X to Y such that R� ⊂ S�,
then we also have R ⊂ S� . Thus, � is upper �–semiregular.

On the other hand, if R ⊂ S�, then by the increasingness of � we also have
R� ⊂ S��. Hence, by the idempotency of � , it follows that R� ⊂ S� . There-
fore, � is also lower �–semiregular. Thus, � is �-regular, and so (1) also holds.

Now, since (3) can be trivially derived from (1) by taking F = � , we need only
show that (3) also implies (2).

For this, note that if (3) holds, then by Theorem 6.1 the operation � is extensive.
Moreover, for any relator R on X to Y , we have FR� = FR . Hence, by taking
R� in place of R , we can see that FR�� = FR� , and thus FR�� = FR also
holds. Hence, by using the upper �–semiregularity of F , we can already infer that
� is upper semiidempotent in the sense that R�� ⊂ R� . Now, by Remark 4.2,
we can see that � is actually idempotent.

Thus, to obtain (2), it remains only to show that � is also increasing. For
this, note that if R and S are relators on X to Y such that R ⊂ S , then by
Theorem 6.1 we also have FR ⊂ FS . Moreover, we have FR = FR� , and thus also
FR� ⊂ FS . Hence, by using the upper �–semiregularity of F , we can already infer
that R� ⊂ S� .

From this theorem, by Theorem 5.3, it is clear that in particular we also have
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Corollary 6.4. If ♦ is a closure operation for relators, then ♦ = �♦ .

Moreover, from Theorem 6.3, by using Definition 4.7, we can immediately derive

Corollary 6.5. For a structure F and an operation � for relators, the following
assertions are equivalent ;

(1) F is �–regular ,
(2) � is a closure operation, and for any two relators R and S on X to Y ,

we have FR ⊂ FS if and only if R� ⊂ S� .

7. A further characterization of regular structures

Theorem 7.1. For a structure F and an operation � for relators, the following
assertions are equivalent :

(1) F is �–regular ,
(2) F is increasing, and for every relator R on X to Y , S = R� is the

largest relator on X to Y such that FS ⊂ FR .

Proof. If (1) holds, then by Theorem 6.1 the structure F is increasing, and for any
relator R on X to Y we have FR� = FR. Moreover, if S is a relator on X to
Y such that FS ⊂ FR , then by using the upper �–semiregulaty of F we can see
that S ⊂ R� . Thus, in particular, (2) also holds.

On the other hand, if (2) holds, and R and S are relators on X to Y such that
FS ⊂ FR , then from the assumed maximality property of R� we can see that
S ⊂ R� . Therefore, F is upper �–semiregular.

Conversely, if R and S are relators on X to Y such that S ⊂ R� , then by
using the assumed increasingness of F we can see that FS ⊂ FR� . Hence, by the
assumed inclusion FR� ⊂ FR , it follows that FS ⊂ FR . Therefore, F is also
lower �–semiregular, and thus (1) also holds.

From this theorem, by Theorem 6.1, it is clear that in particular we also have

Corollary 7.2. If F is a �–regular structure for relators, then for any relator R
on X to Y , S = R� is the largest relator on X to Y such that FS = FR .

From the above results, by Theorem 5.3, it is clear that we also have

Corollary 7.3. If F is a regular structure for relators, then for any relator R on X
to Y , S = R�F is the largest relator on X to Y such that FS ⊂ FR

(
FS = FR

)
.

Hence, by Theorem 5.13, it is clear that in particular we also have

Corollary 7.4. If F is a union-preserving structure for relators, then for any
relator R on X to Y , S = R�F is the largest relator on X to Y such that
FS ⊂ FR

(
FS = FR

)
.

Remark 7.5. Hence, by Remark 5.12, we can see that, for any relator R on X
to Y , S = R# is the largest relator on X to Y such that IntS ⊂ IntR

(
IntS =

IntR
)
.

From Theorem 7.1, by Theorem 6.3, it is clear that in particular we also have

Corollary 7.6. For an operation � for relators, the following assertions are equi-
valent :
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(1) � is a closure operation ,
(2) � is increasing, and for every relator R on X to Y , S = R� is the

largest relator on X to Y such that S� ⊂ R�,
(3) there exists an increasing structure F for relators such that, for every relator

R on X to Y , S = R� is the largest relator on X to Y such that FS ⊂ FR.

However, by using some direct arguments, we can also prove the following

Theorem 7.7. For an operation � for relators, the following assertions are equi-
valent :

(1) � is a semiclosure operation ,
(2) for every relator R on X to Y , S = R� is the largest relator on X to

Y such that S� ⊂ R�
(
S� = R�

)
,

(3) there exists a structure F for relators such that, for every relator R on X
to Y , S = R� is the largest relator on X to Y such that FS ⊂ FR

(
FS = FR

)
.

Proof. If (1) holds and R is a relator on X to Y , then by the idempotency of
� we have

(
R�

)� = R� . Moreover, if S is a relator on X to Y such that
S� ⊂ R� , then by the expansivity of � , we also have S ⊂ R� . Therefore, (2)
also holds.

Now, since (3) can be trivially derived form (2) by taking F = � , we need only
show that (3) also implies (1). For this, note that if (3) holds and R is a relator on
X to Y , then from the equality FR = FR , by using any of the assumed maximality
properties of R� , we can infer that R ⊂ R� . Therefore, � is extensive.

On the other hand, by taking R� in place of R in (3), we can also see that
FR� � ⊂ FR�

(
FR� � = FR�

)
. Now, since FR� ⊂ FR

(
FR� = FR

)
also

holds, we can also see that FR� � ⊂ FR
(
FR� � = FR

)
. Hence, by the assumed

maximality properties of R� , we can already infer that R�� ⊂ R� . Now, by
Remark 4.2, we can see that the corresponding equality is also true. Therefore, �
is idempotent, and thus (1) also holds.

8. Some further results on closure operations

By using a direct argument, we can easily prove the following extension of the
last statement of Remark 5.13.

Theorem 8.1. If � is a closure and � is an increasing involution operation for
relators, then ♦ = �� � is also a closure operation for relators.

Proof. Since � and � are increasing, it is clear that �� , and thus (� � )� is also
increasing. Therefore, ♦ is also increasing.

Moreover, if R is a relator, then by using the extensivity of � we can see
that R� ⊂ R�� . Hence, by using the increasingness of � , we can infer that
R�� ⊂ R���. Now, since R�� = R, we can see that R ⊂ R♦ , and thus ♦ is
also extensive.

Finally, by using the involutiveness of � and the idempontency of � , we can
see that

♦♦ = (�� �)(�� �) = (�� )
(
(� �)(� �)

)
= (�� )

(
∆(� �)

)
= (�� )

(
� �) = �

(
(�� )�

)
= �(� �) = ♦ ,
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where ∆ is the identity operation for relators. Therefore, ♦ is also idempotent.

Remark 8.2. Thus, in particular, ~ = c ∗ c is also a closure operation for relators.
Moreover, it is also worth noticing that, for any relator R on X to Y , we have

R~ =
⋃

R∈R
P (R) =

{
S ⊂ X×Y : ∃ R ∈ R : S ⊂ R

}
.

Namely, if for instance S ∈ R~ , then S ∈ Rc∗c , and thus S c ∈ Rc∗ . There-
fore, there exists R ∈ R such that Rc ⊂ S c . Hence, it follows that S ⊂ R , and
thus S ∈ P (R) . Therefore, S ∈

⋃
R∈R P (R) also holds.

Remark 8.3. By using the corresponding definitions and Theorem 4.5, it can be
easily seen that the operations c , −1 , ∞ , ∂ , and ∗ are union-preserving.

Moreover, we can also easily see that the composition of two union-preserving
operations is also union-preserving. Thus, in particular, ~ is also union-preserving.

Unfortunately, the important closure operations # , ∧ , and M are not union-
preserving. However, we can easily prove the following

Theorem 8.4. If � is a closure operation for relators, then for any family
(
R i

)
i∈I

of relators on X to Y , we have( ⋃
i∈I

R i

)�

=
( ⋃

i∈I

R�
i

)�

.

Proof. If R =
⋃

i∈I R i , then for each i ∈ I we have R i ⊂ R . Hence, by
using the increasingness of � , we can infer that R�

i ⊂ R� . Therefore, we have⋃
i∈I R�

i ⊂ R� . Hence, by using the increasingness and the idempotency of � ,

we can already infer that
(⋃

i∈I R�
i

)� ⊂ R�� = R�.
On the other hand, by the extensivity of � , for each i ∈ I we have R i ⊂ R�

i ,
and hence also R i ⊂

⋃
i∈I R�

i . Therefore, R =
⋃

i∈I R i ⊂
⋃

i∈I R�
i . Hence,

by using the increasingness of � , we can already infer that R� ⊂
(⋃

i∈I R�
i

)�
.

Therefore, the required equality is also true.

From this theorem, by calling a relator R to be �–invariant if R� = R , we
can immediately derive the following

Corollary 8.5. If � is a closure operation for relators, then for any family(
R i

)
i∈I

of relators on X to Y , we have
(⋃

i∈I R i

)� =
⋃

i∈I R�
i if and

only the relator
⋃

i∈I R�
i is �–invariant.

Analogously to Theorem 8.4, we can also easily prove the following

Theorem 8.6. If � is a closure operation for relators, then for any family
(
R i

)
i∈I

of relators on X to Y , we have

⋂
i∈I

R�
i =

( ⋂
i∈I

R�
i

)�

.

Proof. If R =
⋂

i∈I R i , then for each ∈ I we have R ⊂ R i , and hence also

R� ⊂ R�
i . Therefore,

(⋂
i∈I R i

)� = R� ⊂
⋂

i∈I R�
i .
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Hence, by taking R�
i in place of R i , we can already infer that( ⋂

i∈I

R�
i

)�

⊂
⋂
i∈I

R��
i =

⋂
i∈I

R�
i ⊂

( ⋂
i∈I

R�
i

)�

.

Therefore, the required equality is also true.

From this theorem, we can immediately derive the following

Corollary 8.7. If � is a closure operation for relators, then for any family(
R i

)
i∈I

of relators on X to Y , the relator
⋂

i∈I R�
i is �–invariant.

Hence, it is clear that in particular we also have

Corollary 8.8. If � is a closure operation for relators, then for any family(
R i

)
i∈I

of �-invariant relators on X to Y , the relator
⋂

i∈I R i is also
�–invariant.

Remark 8.9. Note that the proofs of the above three theorems also yield some
useful statements for the corresponding generalizations of closure operations.

Remark 8.10. In our former papers, a closure operation � for relator has been
usually called a refinement operation. Therefore, the �–invariant relators have
been rather called �–fine, than �–closed.

Moreover, two relators R and S on X to Y have been called �–equivalent if
R� = S�. And, the relator R has been called �–simple if it is �–equivalent to
a simple relator {R} on X to Y .

Now, a relator R on X to Y may, for instance, be naturally called properly,
uniformly, proximally, topologically, and paratopologically simple if it is �–simple
with � = ∆ , ∗ , # , ∧ , and M , respectively.

9. Inversion compatible operations for relators

Definition 9.1. An unary operation � for relators is called inversion compatible
if for any relator R on X to Y we have(

R�
)−1 =

(
R−1

)�
.

The usefulness of this definition is apparent from the next simple theorems.

Theorem 9.2. If � is an inversion compatible operation for relators, then for any
relator R on X to Y the following assertions are equivalent :

(1) R is �–invariant , (2) R−1 is �–invariant .

Proof. If (1) holds, then we have
(
R−1

)� =
(
R�

)−1 = R−1, and thus (2) also
holds.

Hence, by writing R−1 in place R , we can see that the converse implication is
also true.

Definition 9.3. If � is an unary operation for relators, then a relator R on X is
called �–symmetric if (

R�
)−1 = R�.

Remark 9.4. Now, the relator R may, for instance, be naturally called pro-
perly, uniformly, proximally, topologically, and paratopologically symmetric if it is
�–symmetric with � = ∆ , ∗ , # , ∧ , and M , respectively.
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Theorem 9.5. If R is a properly symmetric relator on X, then R is �–symmetric
for any inversion compatible operation � for relators.

Proof. By the corresponding definitions, we have R� =
(
R−1

)� =
(
R�
)−1.

Theorem 9.6. If � is an inversion compatible operation for relators, then for any
relator R on X the following assertions are equivalent :

(1) R is �–symmetric ,
(2) R−1 is �–symmetric ,
(3) R and R−1 are �–equivalent.

Proof. If (1) holds, then we have R� =
(
R�

)−1 =
(
R−1

)�. Therefore, (3) also
holds.

While, if (3) holds, then
((
R−1

)�)−1

=
(
R�

)−1 =
(
R−1

)�. Therefore, (2)
also holds.

Now, from the implication (1) =⇒ (2), by writing R−1 in place of R , we can
see that the converse implication is also true.

Remark 9.7. In this respect, it is also worth noticing that if � is an unary
operation for relators and R is a �–symmetric relator on X to Y such that R
and R−1 are �–equivalent, then

(
R�

)−1 = R� =
(
R−1

)�.

However, it is now more important to note that, in addition to Theorem 9.6, we
can also prove the following

Theorem 9.8. If � is an inversion compatible closure operation for relators, then
for any relator R on X the following assertions are equivalent :

(1) R is �–symmetric ,

(2) R−1 ⊂ R�; (3) R ⊂
(
R−1

)�,
(4) R is �-equivalent to a properly symmetric relator S on X.

Proof. If (1) holds, then by the extensivity of � , it is clear that R−1 ⊂
(
R�

)−1 =
R�. Therefore, (2) also holds.

Moreover, if (2) holds, then we can see that R ⊂
(
R�

)−1 =
(
R−1

)�. There-
fore, (3) also holds.

While, if (3) holds, then we can quite similarly see that (2) also holds. From (2)
and (3), by using Theorem 6.3, we can infer that

(
R−1

)� ⊂ R� ⊂
(
R−1

)� , and

thus R� =
(
R−1

)�. Therefore, by Theorem 9.6, (1) also holds.
On the other hand, if (1) holds, then R� is properly symmetric. Hence, since

R� =
(
R�

)�, we can already see that (4) holds with S = R�.

Conversely, if (4) holds, then it is clear that
(
R�

)−1 =
(
S�

)−1 =
(
S−1

)� =
S� = R�. Therefore, (1) also holds.

From this theorem, by using Theorem 6.3 and Definition 4.5, we can derive

Corollary 9.9. If � is an inversion compatible operation and F is a �–regular
structure for relators, then for any relator R on X the following assertions are
equivalent :

(1) R is �–symmetric , (2) FR−1 ⊂ FR; (3) FR ⊂ FR−1 .
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Hence, by Theorem 5.3, it is clear that in particular we also have

Corollary 9.10. If F is a regular structure for relators such that the induced
operation �F is inversion compatible, then for any relator R on X the following
assertions are equivalent :

(1) R is �F–symmetric , (2) FR−1 ⊂ FR; (3) FR ⊂ FR−1 .

Remark 9.11. To apply these inclusions to the structure Int , we can note that
if R is a relator on X to Y , then for any A ⊂ X and B ⊂ Y we have

B ∈ IntR−1(A) ⇐⇒ ∃ R ∈ R : R−1 [B ] ⊂ A .

Moreover, we also have

R−1 [B ] ⊂ A ⇐⇒ Ac∩R−1 [B ] = ∅ ⇐⇒ R [Ac ]∩B = ∅ ⇐⇒ R [Ac ] ⊂ B c.

Therefore,

B ∈ IntR−1(A) ⇐⇒ Ac ∈ IntR( B c ) ⇐⇒ B c ∈ Int−1
R (Ac )

⇐⇒ C (B ) ∈ Int−1
R
(
C (A)

)
⇐⇒ B ∈ C−1

[
Int−1

R
(
C (A)

]
⇐⇒ B ∈ C

[
Int−1

R
(
C (A)

]
⇐⇒ B ∈

(
C ◦ Int−1

R ◦ C
)
(A) .

Hence, we can already infer that

IntR−1 = C ◦ Int−1
R ◦ C , and thus also Int−1

R = C ◦ IntR−1◦ C .

Remark 9.12. Finally, we note that the theorems proved in this section can be
generalized by using an arbitrary increasing involution operation � for relators
instead of the inversion −1.

10. The inversion compatibility of some basic operations

Theorem 10.1. If � is an union-preserving operation for relators, then the follo-
wing assertions are equivalent :

(1) � is inversion compatible ,

(2)
(
{R}�

)−1 =
{

R−1
}� for any relation R on X to Y .

Proof. To prove that (2) also implies (1), note that by Remark 8.3 the operation
−1 is union-preserving. Therefore, for any relator R on X to Y , we have

(
R�

)−1 =
( ⋃

R∈R
{R}�

)−1

=
⋃

R∈R

(
{R}�

)−1

=
⋃

R∈R

{
R−1

}� =
( ⋃

R∈R

{
R−1

})�

=
(
R−1

)�
.

Remark 10.2. By using some obvious analogues of our former definitions, we
can easily see that, for an operation � for relations, the following assertions are
equivalent :

(1) � is inversion compatible ,

(2)
(
R�

)−1 ⊂
(
R−1

)� for any relation R on X to Y ,

(3)
(
R−1

)� ⊂
(
R�

)−1 for any relation R on X to Y .



16 Á. SZÁZ

Therefore, as an immediate consequence of Theorem 10.1, we can also state

Corollary 10.3. If � is an union-preserving operation for relators, then the
following assertions are equivalent :

(1) � is inversion compatible ,

(2)
(
{R}�

)−1 ⊂
{

R−1
}� for any relation R on X to Y ,

(3)
{

R−1
}� ⊂

(
{R}�

)−1 for any relation R on X to Y .

However, the latter observation cannot actually be used to simplify the proof of
the following

Theorem 10.4. The operations c , ∞ , ∂ , and ∗ are inversion compatible.

Proof. From Remark 8.3, we know that these operations are union-preserving.
Moreover, for instance, for any two relations R and S on X we have(

R∞)−1 =
( ∞⋃

n=0

Rn

)−1

=
∞⋃

n=0

(
Rn
)−1 =

∞⋃
n=0

(
R−1

)n =
(
R−1

)∞
and

S ∈
{

R−1
}∂ ⇐⇒ S∞ ∈

{
R−1

}
⇐⇒ S∞ = R−1 ⇐⇒

(
S∞)−1 = R

⇐⇒
(
S−1

)∞= R ⇐⇒
(
S−1

)∞∈ {R} ⇐⇒ S−1∈ {R}∂ ⇐⇒ S ∈
(
{R}∂

)−1
.

Therefore,(
{R}∞

)−1 =
(
{R}−1

)∞ and
(
{R}∂

)−1 =
(
{R}−1

)∂
.

Hence, by Theorem 10.1, we can see that ∞ and ∂ are inversion compatible.

Analogously to Remark 10.2, we can also easily prove the following

Theorem 10.5. For an operation � on relators, the following assertions are equi-
valent :

(1) � is inversion compatible ,

(2)
(
R�

)−1 ⊂
(
R−1

)� for any relator R on X to Y ,

(3)
(
R−1

)� ⊂
(
R�

)−1
for any relator R on X to Y .

Proof. To prove that (2) implies (3), note that if (2) holds, then for any relator R on

X to Y we also have
((
R−1

)� )−1

⊂ R� , and hence also
(
R−1

)� ⊂
(
R�

)−1
.

Theorem 10.6. The operation # is also inversion compatible.

Proof. If R is a relator on X to Y , then by Remark 9.11 we have

IntR−1 = C ◦ Int−1
R ◦ C .

Moreover, by using Remark 5.12 and Theorem 6.1, we can see that IntR# = IntR .
Therefore, we also have

Int(R#)−1 = C ◦ Int −1
R# ◦ C = C ◦ Int−1

R ◦ C = IntR−1 .

Hence, by using Remark 5.12, we can already infer that
(
R#

)−1 ⊂
(
R−1

)# .
Therefore, by Theorem 10.5, the required assertion is also true.
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Now, as an immediate consequence Remark 5.12, Theorems 10.6 and 9.6, Corol-
lary 9.10 and Remarks 9.11, we can also state

Theorem 10.7. For a relator R on X, the following assertions are equivalent :

(1) R is proximally symmetric ,

(2) IntR−1 = IntR , (3) Int−1
R = C ◦ IntR ◦ C .

Remark 10.8. Unfortunately, the important closure operations ∧ and M are not
inversion compatible.

Therefore, for any relator R on X to Y , we must also define

R∨ =
(
R∧)−1 and RO =

(
RM
)−1

.

However, these operations have very curious properties [?, ?] .
For instance, the operations ∨∨ and OO coincide with the extremal closure

operations defined by

R• =
{

δR
}∗

, where δR =
⋂

R ,

and

R� = R if R =
{

X×Y
}

and R� = P (X×Y ) if R 6=
{

X×Y
}

.

Remark 10.9. Note that the compositions of inversion compatible operations are
also inversion compatible.

Therefore, by Theorems 10.4 and 10.6, the operations #∞ , #∂ , and #©=c#c
are also inversion compatible.

11. Composition compatible operations for relators

Composition compatibility properties of operations for relators have been first
considered in [?] in somewhat different forms.

Definition 11.1. For an operation � for relators, we say that :

(1) � is left composition semicompatible if
(
S ◦ R

)� =
(
S ◦ R�

)� for any
two relators R on X to Y and S on Y to Z ,

(2) � is right composition semicompatible if
(
S ◦R

)� =
(
S � ◦ R

)� for any
two relators R on X to Y and S on Y to Z .

Remark 11.2. Now, the operation � may be naturally called composition com-
patible if it is both left and right composition semicompatible.

Note that, actually, this is also very weak composition compatibility property.
However, by the following theorem, it will be sufficient for our subsequent purposes.

Theorem 11.3. If � is a composition compatible operation for relators, then for
any two relators R on X to Y and S on Y to Z we have(

S ◦ R
)� =

(
S � ◦ R�

)�
.

Proof. By Definition 11.1, we have
(
S ◦ R

)� =
(
S ◦ R�

)� =
(
S � ◦ R�

)�.

Remark 11.4. In this case, by Definition 11.1, we also have(
S � ◦ R

)� =
(
S ◦ R�

)�
.

From Theorem 11.3, by using the associativity of composition, we can derive
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Corollary 11.5. If � is a composition compatible operation for relators, then for
any three relators R on X to Y , S on Y to Z , and T on Z to W we have(

T ◦ S ◦ R
)� =

(
T � ◦ S � ◦ R�

)�
.

Proof. By using Theorem 11.3, we can see that(
T ◦

(
S ◦ R

))� =
(
T � ◦

(
S ◦ R

)� )�
=
(
T � ◦

(
S � ◦ R�

))�
.

Remark 11.6. In this case, by using Definition 11.1, we can also prove that(
T ◦ S ◦ R

)� =
(
T � ◦ S ◦ R

)� =
(
T ◦ S � ◦ R

)� =
(
T ◦ S ◦ R�

)�
.

However, it is now more interesting, that by using the corresponding definitions,
we can also easily prove the following

Theorem 11.7. If � is a preclosure operation for relators, then for any two
relators R on X to Y and S on Y to Z we have

(1)
(
S ◦ R

)� ⊂
(
S ◦ R�

)� ⊂
(
S � ◦ R�

)�,

(2)
(
S ◦ R

)� ⊂
(
S � ◦ R

)� ⊂
(
S � ◦ R�

)�.

Proof. By the extensivity � , we have R ⊂ R�. Hence, by the elementwise
definition of composition of relators, we can see that S ◦ R ⊂ S ◦ R�. Thus,
by the increasingness of � , we also have

(
S ◦ R

)� ⊂
(
S ◦ R�

)�. Hence,

by writing S � in place of S , we can see that
(
S � ◦ R

)� ⊂
(
S � ◦ R�

)� .
Therefore, the first part of (1) and the second part of (2) are true.

From this theorem, by using Definition 11.1, we can immediately derive

Corollary 11.8. If � is a preclosure operation for relators, then

(1) � is left composition semicompatible if and only if (S◦R�
)� ⊂

(
S◦R

)�

for any two relators R on X to Y and S on Y to Z ,

(2) � is right composition semicompatible if and only if (S�◦R
)� ⊂

(
S◦R

)�

for any two relators R on X to Y and S on Y to Z .

Hence, by Theorem 6.3, it is clear that in particular we also have

Corollary 11.9. If � is a closure operation for relators, then

(1) � is left composition semicompatible if and only if S ◦ R� ⊂
(
S ◦ R

)�

for any two relators R on X to Y and S on Y to Z ,

(2) � is right composition semicompatible if and only if S � ◦ R ⊂
(
S ◦ R

)�

for any two relators R on X to Y and S on Y to Z .

Remark 11.10. In addition to the above results, it is also worth noticing that an
involution operation � for relators is left composition semicompatible if and only
if S ◦ R = S ◦ R� for any two relators R on X to Y and S on Y to Z .

Moreover, since S ◦ R =
⋃

S∈S S ◦ R holds, we can also at once state that an
involution operation � for relators is left composition semicompatible if and only
if S ◦ R = S ◦ R� for any relator R on X to Y and relation S on Y to Z .
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12. Composition compatibilities of the basic closure operations

Now, by using Corollary 11.9 and Theorem 8.4, we can also prove the following

Theorem 12.1. If � is a closure operation for relators, then

(1) � is left composition semicompatible if and only if S ◦ R� ⊂
(
S ◦ R

)�

for any relator R on X to Y and relation S on Y to Z ,

(2) � is right composition semicompatible if and only if S � ◦ R ⊂
(
S ◦R

)�

for any relation R on X to Y and relator S on Y to Z .

Proof. If � is left composition semicompatible, then by Corollary 11.9, for any
relator R and relation S on Y to Z, we have {S} ◦ R� ⊂

(
{S} ◦ R

)� , and

thus S ◦ R� ⊂
(
S ◦ R

)�. Therefore, the ”only if part” of (1) is true.
Conversely, if R is a relator on X to Y and S is a relator on Y to Z , and the

inclusion S ◦R� ⊂
(
S ◦R

)� holds for any relation S on Y to Z , then by using
the corresponding definitions and Theorem 8.4 we can see that

S ◦ R� =
⋃

S∈S
S ◦ R� ⊂

⋃
S∈S

(
S ◦ R

)�

⊂
( ⋃

S∈S

(
S ◦ R

)�
)�

=
( ⋃

S∈S
S ◦ R

)�

=
(
S ◦ R

)�
.

Therefore, by Corollary 11.9, the ”if part” of (1) is also true.

By using this theorem, we can somewhat more easily establish the composition
compatibility properties of the basic closure operations considered in Section 2.

Theorem 12.2. The operations ∗ and # are composition compatible.

Proof. To prove right composition semicompatibility of #, by Theorem 12.1, it is
enough to prove only that, for any relation R on X to Y and relator S on Y to
Z , we have S# ◦ R ⊂

(
S ◦ R

)#.
For this, suppose that W ∈ S#◦R and A ⊂ X. Then, there exists V ∈ S# such

that W = V ◦R . Moreover, there exists S ∈ S such that S
[
R [A ]

]
⊂ V

[
R [A ]

]
,

and thus (S ◦ R)[ A ] ⊂ (V ◦ R)[ A ] = W [A ] . Hence, by taking U = S ◦ R , we
can see that U ∈ S ◦ R such that U [A ] ⊂ W [A ] . Therefore, W ∈

(
S ◦ R

)#
also holds.

Theorem 12.3. The operations ∧ and M are left composition semicompatible.

Proof. To prove left composition semicompatibility of M, by Theorem 12.1, it is
enough to prove only that, for any relator R on X to Y and relation S on Y to
Z , we have S ◦ RM ⊂

(
S ◦ R

)M.
For this, suppose that W ∈ S ◦ RM and x ∈ X. Then, there exists V ∈ RM

such that W = S ◦ V . Moreover, there exist u ∈ X and R ∈ R such that
R(u) ⊂ V (x) . Hence, we can infer that

(S ◦R)(u) = S
[
R(u)

]
⊂ S

[
V (x)

]
= (S ◦ V )(x) = W (x) .

Now, by taking U = S ◦R , we can see that U ∈ S ◦ R such that U(u) ⊂ W (x) .
Therefore, W ∈

(
S ◦ R

)M also holds.
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Instead of the right composition compatibility of the operations ∧ and M , we
can only prove the following

Theorem 12.4. For any two relators R on X to Y and S on Y to Z, we have

(1)
(
S ◦ R

)∧ =
(
S# ◦ R

)∧, (2)
(
S ◦ R

)M =
(
S# ◦ R

)M.

Proof. By the extensivity # , we have S ⊂ S#. Hence, by the elementwise defi-
nition of composition of relators, we can see that S ◦ R ⊂ S# ◦ R. Thus, by the
increasingness of ∧ , we also have

(
S ◦ R

)∧ ⊂ (S# ◦ R
)∧.

To get the converse inclusion, by Theorem 6.3, it is now enough to prove only that
S# ◦ R ⊂

(
S ◦R

)∧. For this, suppose that W ∈ S# ◦ R and x ∈ X. Then, there
exists V ∈ S# and R ∈ R such that W = V ◦R . Moreover, there exists S ∈ S ,
such that S

[
R(x)

]
⊂ V

[
R(x)

]
, and thus (S ◦ R)(x) ⊂ (V ◦ R)(x) = W (x) .

Hence, by taking U = S ◦R , we can see that U ∈ S ◦R such that U(x) ⊂ W (x) .
Therefore, W ∈

(
S ◦ R

)∧ also holds.
Thus, we have proved (1). Assertion (2) can now be immediately derived from

(1) by using that the operation M is ∧–absorbing in the sense that U ∧M = U M for
any relator U on X to Z .

From this theorem, by using Theorem 12.3, we can immediately derive

Corollary 12.5. For any two relators R on X to Y and S on Y to Z, we have

(1)
(
S ◦ R

)∧ =
(
S# ◦ R∧ )∧, (2)

(
S ◦ R

)M =
(
S# ◦ RM

)M.

Remark 12.6. By using Theorem 12.1, we can also somewhat more easily prove
that the operation ~ , defined in Remark 8.2, is also composition compatible.

13. Seminormal functions

In [?] , slightly extending the ideas of Ore [?] , Schmidt [?, p. 209] , Blyth and
Janowitz [?, p. 11] , and the present author [?] on Galois connections, residuated
mappings, and normal functions, we have introduced the following definition in a
somewhat different form.

Definition 13.1. Let X and Y be gosets. Moreover, let f be a function of X to
Y and g be a function of Y to X.

Then, we say that :
(1) f is upper g–seminormal if f(x) ≤ y implies x ≤ g(y) for all x ∈ X and

y ∈ Y ,
(2) f is lower g–seminormal if x ≤ g(y) implies f(x) ≤ y for all x ∈ X and

y ∈ Y .

Now, by writing R and S in place of the inequality relations in X and Y ,
respectively, we can see that f is upper g–normal if and only if f(x) R y implies
xS g(y) for all x ∈ X and y ∈ Y .

This shows an obvious way to a straightforward generalization of Definition 13.1
to relator spaces.

Definition 13.2. Let (X, Y )(R) and (Z, W )(S ) be relator spaces. Moreover,
let f be a function of X to Z and g be a function of W to Y .

Then, we say that :
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(1) f is upper g–seminormal if for each S ∈ S there exists R ∈ R such that
f(x)S w implies xR g(w) for all x ∈ X and w ∈ W ,

(2) f is lower g–seminormal if for each R ∈ R there exists S ∈ S such that
xR g(w) implies f(x)S w for all x ∈ X and w ∈ W .

Hence, by noticing the pairwise equivalence of the implications

f(x)S w =⇒ xR g(w) ,

w ∈ S
(
f(x)

)
=⇒ g(w) ∈ R(x) ,

w ∈ S
(
f(x)

)
=⇒ w ∈ g−1 [R(x) ] ,

w ∈
(
S ◦ f

)
(x) =⇒ w ∈

(
g−1◦R

)
(x) ,

and the inclusion
(
S ◦ f

)
(x) ⊂

(
g−1◦ R

)
(x) , we can easily get following concise

reformulation of Definition 13.2.

Theorem 13.3. Under the notations of Definition 13.2,

(1) f is upper g–seminormal if and only if for each S ∈ S there exists R ∈ R
such that S ◦ f ⊂ g−1◦R ,

(2) f is lower g–seminormal if and only if for each R ∈ R there exists S ∈ S
such that g−1◦R ⊂ S ◦ f .

Hence, by using the composition of relators, and the operation ~ , defined in
Remark 8.2 such that ~ = c ∗ c , and thus

R~ =
{

S ⊂ X×Y : ∃ R ∈ R : S ⊂ R
}

for any relator R on X to Y , we can easily get the following concise reformulation
of Theorem 13.3.

Theorem 13.4. Under the notations of Definition 14.2,

(1) f is upper g–seminormal if and only if S ◦ f ⊂
(
g−1◦ R

)~ ,
(2) f is lower g–seminormal if and only if g−1◦ R ⊂

(
S ◦ f )~ .

Hence, by using that ~ is also a composition compatible closure operation for
relators, we can immediately derive the following theorem which already shows the
~–invariance of Definition 13.2.

Theorem 13.5. Under the notations of Definition 13.2,

(1) f is upper g–seminormal if and only if
(
S~ ◦ f

)~ ⊂
(
g−1◦ R~

)~,

(2) f is lower g–seminormal if and only if
(
g−1◦ R~

)~ ⊂
(
S~◦ f )~ .

Remark 13.6. Hence, by using [?, Definition 4.1] , we can already see that

(1) the function f is upper g–seminormal if and only if the relation pair(
f , g−1

)
is upper ~–semicontinuous ,

(2) the function f is lower g–seminormal if and only if the relation pair(
f −1, g

)
is lower ~–semicontinuous .

This shows that, in accordance with [?] , upper and lower Galois connections
( i. e., upper and lower seminormal functions) are very particular cases of upper and
lower semicontinuous pairs of relations, respectively.
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14. Semiregular functions

In [?] , slightly extending the ideas of Pataki [?] and the present author [?] , we
have also introduced the following definition in a somewhat different form.

Definition 14.1. Let X and Y be gosets. Moreover, let f be a function of X to
Y , and ϕ be a function of X to itself.

Then, we say that :
(1) f is upper ϕ–semiregular if f(u) ≤ f(v) implies u ≤ ϕ(v) for all u, v ∈ X,
(2) f is lower ϕ–semiregular if u ≤ ϕ(v) implies f(u) ≤ f(v) for all u, v ∈ X.

Now, by writing R and S in place of the inequality relations in X and Y ,
respectively, we can see that f is upper ϕ–semiregular if and only if f(u) S f(v)
implies u R ϕ(v) for all u, v ∈ X.

This shows an obvious way to a straightforward generalization of Definition 14.1
to relator spaces.

Definition 14.2. Let (X, Y )(R) and Z (S ) be relator spaces. Moreover, let f
be a function of X to Z, and ϕ be a function of X to Y .

Then, we say that :
(1) f is upper ϕ–semiregular if for each S ∈ S there exists R ∈ R such that

f(u)S f(v) implies u R ϕ(v) for all u, v ∈ X,

(2) f is lower ϕ–semiregular if for each R ∈ R there exists S ∈ S such that
u R ϕ(v) implies f(u)S f(v) for all u, v ∈ X.

Now, by noticing the pairwise equivalence of the implications

f(u)S f(v) =⇒ u R ϕ(v) ,

f(v) ∈ S
(
f(u)

)
=⇒ ϕ(v) ∈ R(u) ,

v ∈ f −1
[
S
(
f(u)

) ]
=⇒ v ∈ ϕ−1 [R(u) ] ,

v ∈
(
f −1◦ S ◦ f

)
(u) =⇒ v ∈

(
ϕ−1◦R

)
(u) ,

and the inclusion
(
f −1 ◦ S ◦ f

)
(u) ⊂

(
ϕ−1 ◦ R

)
(u) , we can easily get following

concise reformulation of Definition 14.2.

Theorem 14.3. Under the notations of Definition 14.2,

(1) f is upper ϕ–semiregular if and only if for each S ∈ S there exists R ∈ R
such that f −1◦ S ◦ f ⊂ ϕ−1◦R ,

(2) f is lower ϕ–semiregular if and only if for each R ∈ R there exists S ∈ S
such that ϕ−1◦R ⊂ f −1◦ S ◦ f .

Now, by using the composition of relators, and the operation ~ defined in
Remark 8.2, we can easily establish the following concise reformulation of Theorem
14.3.

Theorem 14.4. Under the notations of Definition 14.2,

(1) f is upper ϕ–semiregular if and only if f −1◦ S ◦ f ⊂
(
ϕ−1◦ R

)~,
(2) f is lower ϕ–semiregular if and only if ϕ−1◦ R ⊂

(
f −1◦ S ◦ f )~.

Hence, by using that ~ is also a composition compatible closure operation for
relators, we can immediately derive the following theorem which already shows the
~–invariance of Definition 14.2.
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Theorem 14.5. Under the notations of Definition 14.2,

(1) f is upper ϕ–semiregular if and only if
(
f −1◦ S~ ◦ f

)~ ⊂
(
ϕ−1◦R~

)~,

(2) f is lower ϕ–semiregular if and only if
(
ϕ−1◦R~

)~ ⊂
(
f −1◦ S~◦ f )~ .

Remark 14.6. Hence, by using [?, Definition 10.1], and an plausible supplement
of it, we can also see that

(1) f is upper ϕ–semiregular if and only if it is mildly ~–continuous with
respect to the relators ϕ−1◦ R~ and S ,

(2) f is lower ϕ–semiregular if and only if it is mildly ~–contracontinuous with
respect to the relators ϕ−1◦ R~ and S .

Note that now we have
(
ϕ−1◦ R

)~ =
(
ϕ−1◦ R~

)~. Therefore, in the above
assertions, we could also write ϕ−1◦ R in place of ϕ−1◦ R~.

Remark 14.7. The above remark shows that, in accordance with [?] , upper and
lower Pataki connections ( i. e., upper and lower semiregular functions) are very
particular cases of mildly and contra mildly continuous relations, respectively.

Unfortunately, in [?] we have not recognized the importance of the operation
~ . Moreover, in [?] , we have used a reverse terminology. This also shows that the
right definitions can usually be found only in the context of relator spaces.

Remark 14.8. For instance, the most natural definitions of Cauchy , completeness,
compactness, well-chainedness, and connectedness properties have been given in [?]
and [?] . (The results of [?] have to be also generalized and supplemented.)

It has turned out that ”convergent” and ”Cauchy” are actually equivalent. More-
over, ”compact” and ”connected” are particular cases of ”precompact” and ”well-
chained”, respectively. And, ”well-chainedness” is a particular case of ”simplicity”.

15. Seminormal relators

Now, by Theorem 13.5, we may naturally introduce the following general defi-
nition which actually makes seminormalities to be equivalent to semicontinuities.

Definition 15.1. Let (X, Y )(R) and (Z , W )(S ) be relator spaces. Moreover,
let F be a relator on X to Z and G be a relator on W to Y . Furthermore, assume
that � is a direct unary operation for relators.

Then, we shall say that :

(1) F is upper �–G–seminormal if
(
S� ◦ F �

)� ⊂
((
G �

)−1◦ R�
)�

,

(2) F is lower �–G–seminormal if
((
G �

)−1◦ R�
)�

⊂
(
S� ◦ F �

)�
.

Remark 15.2. Now, F may be naturally called �–G–normal if it is both upper
and lower �–G–seminormal. Moreover, for instance F may be naturally called
�–normal if it is �–G–normal for some relator G on W to Y .

Thus, in accordance with our former terminology, F may, for instance, be
naturally called properly, uniformly, proximally, topologically, and paratopologically
normal if it is �–normal with � = ∆ , ∗ , # , ∧ , and M , respectively.

From Definition 15.1, by using Theorems 6.3 and 11.3, we can immediately derive
the following two theorems.
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Theorem 15.3. In in particular � is a closure operation, then

(1) F is upper �–G–seminormal ⇐⇒ S� ◦ F � ⊂
((
G �

)−1◦ R�
)�

,

(2) F is lower �–G–seminormal ⇐⇒
(
G �

)−1◦ R� ⊂
(
S� ◦ F �

)�
.

Theorem 15.4. In in particular � is an inversion and composition compatible
operation, then

(1) F is upper �–G–seminormal ⇐⇒ (S ◦ F )� ⊂
(
G−1◦ R

)�,

(2) F is lower �–G–seminormal ⇐⇒
(
G−1◦ R

)� ⊂ (S ◦ F )�.

Hence, it is clear that in particular we also have

Corollary 15.5. In in particular � is an inversion and composition compatible
closure operation, then

(1) F is upper �–G–seminormal ⇐⇒ S ◦ F ⊂
(
G−1◦ R

)�,

(2) F is lower �–G–seminormal ⇐⇒ G−1◦ R ⊂ (S ◦ F )�.

Remark 15.6. In addition to the above results, it is also worth noticing that if in
particular � is an increasing involution operation, then

(1) F is upper �–G–seminormal ⇐⇒ S� ◦ F � ⊂
(
G �

)−1◦ R�,

(2) F is lower �–G–seminormal ⇐⇒
(
G �

)−1◦ R� ⊂ S� ◦ F �.

Now, as a straightforward extension of the corresponding results of Section 13,
we can also easily prove the following

Theorem 15.7. Under the notations of Definition 15.1, the following assertions
are equivalent :

(1) F is upper ~–G–seminormal ,

(2) for any S ∈ S and F ∈ F there exist G ∈ G and R ∈ R such that
S ◦ F ⊂ G−1◦R ,

(3) for any S ∈ S and F ∈ F there exist G ∈ G and R ∈ R such that
F (x) ∩ S−1(w) 6= ∅ implies G(w) ∩R(x) 6= ∅ for all x ∈ X and w ∈ W .

Proof. To prove the implications (1) =⇒ (2) =⇒ (3), not that if (1) holds, then by
Remarks 8.2, 10.9 and 12.6, and Corollary 15.5, we have

S ◦ F ⊂
(
G−1◦ R

)~
.

Thus, by the corresponding definitions, for any S ∈ S and F ∈ F there exist
G ∈ G and R ∈ R such that

S ◦ F ⊂ G−1◦R .

Hence, we can infer that(
S ◦ F )(x) ⊂

(
G−1◦R

)
(x) , and thus S

[
F (x) ] ⊂ G−1

[
R(x)

]
for all x ∈ X. Therefore,

w ∈ S
[
F (x) ] =⇒ w ∈ G−1

[
R(x)

]
,

and thus
S−1(w) ∩ F (x) 6= ∅ =⇒ G(w) ∩R(x) 6= ∅

for all x ∈ X and w ∈ W .
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From this theorem, it is clear that in particular we also have

Corollary 15.8. If in particular each member of the families F and G is a func-
tion, then the following assertions are equivalent :

(1) F is upper ~–G–seminormal ,
(2) for any S ∈ S and f ∈ F there exist g ∈ G and R ∈ R such that f(x)Sw

implies xR g(w) for all x ∈ X and w ∈ W .

Now, analogously to Theorem 15.7, we can also prove the following

Theorem 15.9. Under the notations of Definition 15.1, the following assertions
are equivalent :

(1) F is lower ~–G–seminormal ,
(2) for any G ∈ G and R ∈ R there exist S ∈ S and F ∈ F such that

G−1◦R ⊂ S ◦ F ,
(3) for any G ∈ G and R ∈ R there exist S ∈ S and F ∈ F such that

G(w) ∩R(x) 6= ∅ implies F (x) ∩ S−1(w) 6= ∅ for all x ∈ X and w ∈ W .

Hence, it is clear that in particular we also have

Corollary 15.10. If in particular each member of the families F and G is a
function function, then the following assertions are equivalent :

(1) F is lower ~–G–seminormal ,
(2) for any g ∈ G and R ∈ R there exist S ∈ S and f ∈ F such that xR g(w)

implies f(x)S w for all x ∈ X and w ∈ W .

16. Semiregular relators

Now, by Theorem 14.5, we may naturally introduce the following general defi-
nition which brings semiregulaties quite close to mild continuities.

Definition 16.1. Let (X, Y )(R) and Z (S ) be relator spaces. Moreover, let F
be a relator on X to Z and Φ be a relator on X to Y . Furthermore, assume that
� is a direct unary operation for relators.

Then, we shall say that :

(1) F is upper �–Φ–semiregular if
((
F�

)−1◦S�◦F�
)�

⊂
((

Φ�
)−1◦R�

)�
,

(2) F is lower �–Φ–semiregular if
((

Φ�
)−1◦R�

)�
⊂
((
F �

)−1◦S�◦F�
)�

.

Remark 16.2. Now, F may be naturally called �–Φ–regular if it is both upper
and lower �–Φ–semiregular. Moreover, for instance F may be naturally called
�–regular if it is �–Φ–regular for some relator Φ on X to Y .

Thus, in accordance with our usual terminology, F may, for instance, be
naturally called properly, uniformly, proximally, topologically, and paratopologically
regular if it is �–regular with � = ∆ , ∗ , # , ∧ , and M , respectively.

From Definition 16.1, by using Theorems 6.3 and 11.3 and Corollary 11.5, we
can immediately derive the following two theorems.

Theorem 16.3. In in particular � is a closure operation, then

(1) F is upper �–Φ–semiregular ⇐⇒
(
F�

)−1◦S�◦F� ⊂
((

Φ�
)−1◦R�

)�
,
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(2) F is lower �–Φ–semiregular ⇐⇒
(
Φ�
)−1◦R� ⊂

((
F �

)−1◦S�◦F�
)�

.

Theorem 16.4. In in particular � is an inversion and composition compatible
operation, then

(1) F is upper �–Φ–semiregular ⇐⇒
(
F−1◦ S ◦ F

)� ⊂
(
Φ−1◦ R

)�,

(2) F is lower �–Φ–semiregular ⇐⇒
(
Φ−1◦ R

)� ⊂
(
F−1◦ S ◦ F

)�.

Hence, it is clear that in particular we also have

Corollary 16.5. In in particular � is an inversion and composition compatible
closure operation, then

(1) F is upper �–Φ–semiregular ⇐⇒ F−1◦ S ◦ F ⊂
(
Φ−1◦ R

)�,

(2) F is lower �–Φ–semiregular ⇐⇒ Φ−1◦ R ⊂
(
F−1◦ S ◦ F

)�.

Remark 16.6. In addition to the above results, it is also worth noticing that if in
particular � is an increasing involution operation, then

(1) F is upper �–Φ–semiregular ⇐⇒
(
F�

)−1◦ S� ◦ F� ⊂
(
Φ�

)−1◦ R�,

(2) F is lower �–Φ–semiregular ⇐⇒
(
Φ�
)−1◦ R� ⊂

(
F �

)−1◦ S� ◦ F�.

Now, as a straightforward extension of the corresponding results of Section 14,
we can also easily prove the following

Theorem 16.7. Under the notations of Definition 16.1, the following assertions
are equivalent :

(1) F is upper ~–Φ–semiregular ,
(2) for any F1 , F2 ∈ F and S ∈ S there exist φ ∈ Φ and R ∈ R such that

F −1
2 ◦ S ◦ F1 ⊂ φ−1◦R ,
(3) for any F1 , F2 ∈ F and S ∈ S there exist φ ∈ Φ and R ∈ R such that

F2(v) ∩ S
[
F1(u)

]
6= ∅ implies φ(v) ∩R(u) 6= ∅ for all u, v ∈ X.

Proof. To prove the implications (1) =⇒ (2) =⇒ (3), not that if (1) holds, then by
Remarks 8.2, 10.9 and 12.6, and Corollary 16.5 we have

F−1◦ S ◦ F ⊂
(
Φ−1◦ R

)~
Thus, by the corresponding definitions, for any F1 , F2 ∈ F and S ∈ S there exist
φ ∈ Φ and R ∈ R such that

F −1
2 ◦ S ◦ F1 ⊂ φ−1◦R .

Hence, we can infer that(
F −1

2 ◦ S ◦ F1

)
(u) ⊂

(
φ−1◦R

)
(u) , and thus F −1

2

[
S
[
F1(u)

] ]
⊂ φ−1

[
R(u)

]
for all u ∈ X. Therefore,

v ∈ F −1
2

[
S
[
F1(u)

] ]
=⇒ v ∈ φ−1

[
R(u)

]
and thus

F2(v) ∩ S
[
F1(u)

]
6= ∅ =⇒ φ(v) ∩R(u) 6= ∅

for all u, v ∈ X.

From this theorem, it is clear that in particular we also have
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Corollary 16.8. If in particular each member of the families F and Φ is a
function, then the following assertions are equivalent :

(1) F is upper ~–Φ–semiregular ,
(2) for any f1 , f2 ∈ F and S ∈ S there exist ϕ ∈ Φ and R ∈ R such that

f1(u) S f2(v) implies u R ϕ(v) for all u, v ∈ X.

Now, analogously to Theorem 16.7, we can also prove the following

Theorem 16.9. Under the notations of Definition 16.1, the following assertions
are equivalent :

(1) F is lower ~–Φ–semiregular ,
(2) for any φ ∈ Φ and R ∈ R there exist F1 , F2 ∈ F and S ∈ S such that

φ−1◦R ⊂ F −1
2 S ◦ F1 ,

(3) for any φ ∈ Φ and R ∈ R there exist F1 , F2 ∈ F and S ∈ S such that
φ(v) ∩R(x) 6= ∅ implies F2(v) ∩ S

[
F1(u)

]
6= ∅ for all u, v ∈ X.

Hence, it is clear that in particular we also have

Corollary 16.10. If in particular each member of the families F and G is a
function function, then the following assertions are equivalent :

(1) F is lower ~–Φ–semiregular ,
(2) for any ϕ ∈ Φ and R ∈ R there exist f1 , f2 ∈ F and S ∈ S such that

xR ϕ(v) implies f1(v) S f2(v) for all u, v ∈ X.

17. ~–seminormalities and ~–semiregularities with respect to
complement relators

By using Theorem 15.7, we can also easily prove the following

Theorem 17.1. Under the notations of Definition 15.1, the following assertions
are equivalent :

(1) F is upper ~–G–seminormal with respect to the relators Rc and S c ,

(2) for any S ∈ S and F ∈ F there exist G ∈ G and R ∈ R such that
G(w) ⊂ R(x) implies F (x) ⊂ S−1(w) for all x ∈ X and w ∈ W .

Proof. To prove the implication (1) =⇒ (2), note that if (1) holds, then by Theorem
15.7 for any S ∈ S and F ∈ F there exist G ∈ G and R ∈ R such that, for any
x ∈ X and w ∈ W ,

F (x) ∩
(
S c
)−1(w) 6= ∅ =⇒ G(w) ∩Rc(x) 6= ∅ ,

and thus
G(w) ∩Rc(x) = ∅ =⇒ F (x) ∩

(
S c
)−1(w) = ∅ .

Hence, by using that Rc(x) = R(x)c and
(
S c
)−1(w) =

(
S−1

)c(w) = S−1(w)c,
we can infer that

G(w) ∩R(x)c = ∅ =⇒ F (x) ∩ S−1(w)c = ∅ ,

and thus
G(w) ⊂ R(x) =⇒ F (x) ⊂ S−1(w) .

Therefore, (2) also holds.

By using Theorem 15.9, we can quite similarly prove the following
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Theorem 17.2. Under the notations of Definition 15.1, the following assertions
are equivalent :

(1) F is lower ~–G–seminormal with respect to the relators Rc and S c,

(2) for any G ∈ G and R ∈ R there exist S ∈ S and F ∈ F such that
F (x) ⊂ S−1(w) implies G(w) ⊂ R(x) .

By using Theorem 16.7, we can only prove the following

Theorem 17.3. If in addition the notations of Definition 16.1 we assume that
each member of F is a function, then the following assertions are equivalent :

(1) F is upper ~–Φ–semiregular with respect to the relators Rc and S c,

(2) for any F1 , F2 ∈ F and S ∈ S there exist φ ∈ Φ and R ∈ R such that
φ(v) ⊂ R(u) implies f2(v) ∈ S

(
f1(u)

)
for all u, v ∈ X.

Proof. To prove the implication (1) =⇒ (2) , note that if (1) holds, then by Theorem
16.7 for any f1 , f2 ∈ F and S ∈ S there exist φ ∈ Φ and R ∈ R such that, for
any u, v ∈ X,

f2(v) ∈ S c
(
f1(u)

)
6= ∅ =⇒ φ(v) ∩Rc(u) 6= ∅ ,

and thus
φ(v) ∩Rc(u) = ∅ =⇒ f2(v) /∈ S c

(
f1(u)

)
.

Hence, by using that Rc(x) = R(x)c and S c
(
f1(u)

)
= S

(
f1(u)

)c , we can infer
that

φ(v) ∩R(u)c = ∅ =⇒ f2(v) /∈ S
(
f1(u)

)c
,

and thus
φ(v) ⊂ R(u) =⇒ f2(v) ∈ S

(
f1(u)

)
.

Therefore, (2) also holds.

By using Theorem 16.9, we can quite similarly prove the following

Theorem 17.4. If in addition the notations of Definition 16.1 we assume that
each member of F is a function, then the following assertions are equivalent :

(1) F is lower ~–Φ–semiregular with respect to the relators Rc and S c,

(2) for any φ ∈ Φ and R ∈ R there exist f1 , f2 ∈ F and S ∈ S such that
f2(v) ∈ S

(
f1(u)

)
implies φ(v) ⊂ R(u) for all u, v ∈ X.

18. Relationships between seminormal and semiregular relators

The subsequent theorems are straightforward generalization of some fundamental
theorems on Galois and Pataki connections established in [?] and [?] .

Theorem 18.1. Let (X, Y )(R) and (Z , W )(S ) be relator spaces. Moreover,
let F be a relator on X to Z and G be a relator on W to Y . Furthermore, assume
that � is a direct inversion compatible unary operation for relators.

Then the following assertions are equivalent :

(1) F is lower �–G–seminormal with respect to the relators R and S ,

(2) G is upper �–F–seminormal with respect to the relators R−1 and S−1 .
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Proof. To prove that (1) implies (2), note that if (1) holds, then by Definition 15.1
we have ((

G �
)−1◦ R�

)�
⊂
(
S � ◦ F �

)�
.

Hence, by using that(((
G �

)−1◦ R�
)�
)−1

=
(((

G �
)−1◦ R�

)−1
)�

=
((
R�

)−1◦ G �
)�

=
((
R−1

)�◦ G �
)�

and((
S � ◦ F �

)� )−1

=
((
S � ◦ F �

)−1
)�

=
((
F �

)−1◦
(
S �

)−1
)�

=
((
F �

)−1◦
(
S−1

)� )�
,

we can already infer that((
R−1

)�◦ G �
)�

⊂
((
F �

)−1◦
(
S−1

)� )�
.

Thus, by Definition 15.1, assertion (2) also holds.

Remark 18.2. From this theorem, we can at once see that now the following
assertions are also equivalent :

(1) F is upper �–G–seminormal with respect to the relators R and S ,
(2) G is lower �–F–seminormal with respect to the relators R−1 and S−1 .

However, it is now more important to note that we also have the following

Theorem 18.3. Let (X, Y )(R) and Z (S ) be relator spaces. Moreover, let F
be a relator on X to Z and G be a relator on Z to Y .

Furthermore, assume that � is a direct, increasing, inversion and composition
compatible unary operation for relators such that F is upper �–G–seminormal.

Then, under the notation Φ = G ◦F , the relator F is upper �–Φ–semiregular.

Proof. Now, by Theorem 15.4, we have(
S ◦ F

)� ⊂
(
G−1◦ R

)�
.

Hence, by using the definition of the composition of relators, we can infer that

F−1◦
(
S ◦ F

)� ⊂ F−1◦
(
G−1◦ R

)�
.

Hence, by using the increasingness of � , we can infer that(
F−1◦

(
S ◦ F

)� )�
⊂
(
F−1◦

(
G−1◦ R

)�)�
.

Hence, by using the left composition compatibility of � , we can infer that(
F−1◦ S ◦ F

)� ⊂
(
F−1◦ G−1◦ R

)�
.

Hence, by using that F−1◦ G−1 =
(
G ◦ F

)−1 = Φ−1, we can already infer that(
F−1◦ S ◦ F

)� ⊂
(
Φ−1◦ R

)�
.

Thus, by Theorem 16.4, the required assertion is also true.
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Remark 18.4. Beside proving a lower counterpart of this theorem, it is also worth
noticing that if F is lower �–G–seminormal with respect to the relators R and
S , then by Theorem 18.1 the relator G is upper �–F–seminormal with respect
to the relators S−1 and R−1. Thus, by Theorem 18.3, the relator G is upper
�–F◦ G–semiregular with respect to the relators S−1 and R−1.

However, it is now more important to note that, as a partial converse to Theorem
18.3, we can also prove the following

Theorem 18.5. Let (X, Y )(R) and Z (S ) be relator spaces. Moreover, let F
be a relator on X onto Z and Φ be a relator on X to Y .

Furthermore, assume that � is a direct, increasing, inversion and composition
compatible unary operation for relators such that F is upper �–Φ–semiregular.
Moreover, assume that F ◦ F−1 = {∆Z } .

Then, for any relator G on Z to Y with Φ = G ◦ F , the relator F is upper
�–G–seminormal.

Proof. Now, by Theorem 16.4 and the equality Φ−1 = F−1◦ G−1, we have(
F−1◦ S ◦ F

)� ⊂
(
Φ−1◦ R

)� =
(
F−1◦ G−1◦ R

)�
.

Hence, quite similarly as in the proof of Theorem 18.3, we can infer that

F ◦
(
F−1◦ S ◦ F

)� ⊂ F ◦
(
F−1◦ G−1◦ R

)�
,

and hence (
F ◦

(
F−1◦ S ◦ F

)� )�
⊂
(
F ◦

(
F−1◦ G−1◦ R

)� )�
,

and hence (
F ◦ F−1◦ S ◦ F

)� ⊂
(
F ◦ F−1◦ G−1◦ R

)�
.

Hence, by using that F ◦ F−1◦ U = {∆Z } ◦ U = U for any relator U on X to
Z , we can already infer that(

S ◦ F
)� ⊂

(
G−1◦ R

)�
.

Thus, by Theorem 15.4, the required assertion is also true.

Remark 18.6. To see the limited range of applicability of this theorem, note that
if F ◦F−1 = {∆Z } , then for any F1 , F2 ∈ F we have F1 ◦ F −1

2 = ∆Z . That is,

F1 [F −1
2 (z) ] =

(
F1◦ F −1

2

)
(z) = ∆Z(z) = {z}

for all z ∈ Z .
Thus, in particular, for each z ∈ Z , we have

z ∈ F1 [F −1
2 (z) ] , and hence F −1

1 (z) ∩ F −1
2 (z) 6= ∅ .

Therefore, each member of F is onto Z.
Moreover, for each z ∈ Z , we have F1 [F −1

2 (z) ] ⊂ {z} . Therefore,

z ∈ F2(x) , w ∈ F1(x) =⇒ z = w .

for all x ∈ X. Hence, we can see that F2(x) = F1(x) for all x ∈ DF1 ∩ DF2 .
Moreover, by taking F2 = F1 , we can see that each member of F is a function.

Conversely, we can also easily check that if each member of F is a function
on X onto Z such that f1(x) = f2(x) for all f1 , f2 ∈ F and x ∈ Df1 ∩ Df2 ,
then F ◦ F−1 = {∆Z } .
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33. Á. Száz, Uniformly, proximally and topologically compact relators, Math. Pannon. 8 (1997),
103–116.
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