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AN INSTRUCTIVE TREATMENT
AND SOME NATURAL EXTENSIONS
OF A SET-VALUED FUNCTION OF ZSOLT PALES

ARPAD SzAz

ABSTRACT. In this paper, we offer an instructive treatment and some natural exten-
sions of a subadditive set-valued function of Zs. Péles.

This function shows that the boundedness condition in a set-valued generalization
of Hyers’s stability theorem, proved by Z. Gajda and R. Ger, is essential.

Here, instead of set-valued functions, we shall use relations. Thus, the results will
also illustrate the appropriateness of the relational methods of the present author.

INTRODUCTION

Hyers [24] in 1941, giving a partial answer to a general problem formulated by
S. M. Ulam during a talk at the University of Wisconsin in 1940, proved a slightly
weaker Banach space particular case the following stability theorem.

Theorem 1. If f is an e—approximately additive function of a commutative semi-
group X to a Banach space Y, for some € > 0, in the sense that

[flz+y)—flz)-f) I <e

for all z,y € X, then there exists an additive function g of X toY such that g
1s e—near to f in the sense that

1 f(z) —g@)] < e

for all x € X.
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2 A. SZAzZ
Remark 1. Hence, by using the N-homogeneity of g, one can infer that

g(x)= lim n~'f(nz)

n—oo

for all x € X. Therefore, the additive function g is uniquely determined.

By Ger [17], M. Laczkovich announced at a conference that a strict inequality
form of the X = N, Y = R and € = 1 particular case of the above theorem
was already proved by Pdlya and Szegd [37, Aufgabe 99, pp. 17, 171] in 1925.
Moreover, this particular case is actually equivalent to the original theorem. (For
some ideas in this respect, see [63].)

However, it is now more important to note that Hyers’s theorem was already
transformed into set-valued settings by W. Smajdor [47] and Gajda and Ger
[14], in 1986 and 1987, respectively, by making use the following observations.

If fand g are as in Theorem 1 and B={y €Y : |y| <e}, then

g(z)— f(z) e B and f(z+y)—f(x)—f(y) € B,
and hence
g(x) € f(x)+ B and flz+y)e fl@)+ fy)+ B

forall x,ye X.
Therefore, by defining

F(x)=f(z)+ B

for all z € X, we can get a set-valued function F of X to Y such that g is a
selection of F and F' is subadditive. That is,

g(x) € F(x) and F(zx+y)C F(z)+ F(y)

forall x,ye X.

Thus, the essence of Hyers’s theorem is nothing but the statement of the existence
of an additive selection function of a certain subadditive set-valued function. A
similar observation, in connection with the Hahn—Banach extension theorems, was
already announced by Rodriguez-Salinas and Bou [43] in 1974 and Gajda, A.
Smajdor and W. Smajdor [15] in 1992. (See also [49], [53] and [20] for some
further developments.)

In particular, in 1987 Gajda and Ger [14] proved the following generalization
of Theorem 1. (See also Gajda [13, Theorem 4.2] for a further generalization.)

Theorem 2. If F is a subadditive set-valued function of a commutative semigroup
X to a Banach space Y such that the values of F' are nonempty, closed and convex,
and moreover

sup {diam(F(z)) : z€ X} < oo,

then F has an additive selection function f .
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Remark 2. Hence, by using the N-homogeneity of f and the above boundedness
condition on F', one can infer that

{fx)} =) n""F(nz)

for all = € X. Therefore, the additive selection function f of F' is uniquely
determined.

At the same time, Gajda and Ger [14] also proved an extension of this theorem
to a separated, sequentially complete topological vector space Y. (See also Gajda
[13, Theorem 4.3] for a further generalization.)

The importance of the observations of W. Smajdor, Gajda and Ger was soon
recognized by Hyers and Rassias [25], Rassias [40], Hyers, Isac and Rassias |26,
pp. 204-231], and Czerwik [9, pp. 301-329].

Moreover, the results of Gajda and Ger [14] have been generalized and improved
by Popa [38, 39], Badora [3], Badora, Ger and Péles [4], Piao [36], Lu and
Park [30], and the present author [58, 60].

However, it is now more important to note that, by finding the following coun-
terexample, Zs. Pales showed at a conference that the boundedness condition on
the function F' is essential for the proof of Theorem 2.

This counterexample, which also clarifies the importance of the infimality con-
dition of [58], was not originally published by Péles. However, it was cited by
Gajda and Ger [14] in 1987, Hyers and Rassias [25] in 1992, Rassias [40], and
Hyers, Isac and Rassias [26, p. 210] in 1998. (Moreover, A. Smajdor [46] in
1990 considered a superadditive counterpart of it.)

Example. Define R, =[0, 00| and
F(x) = [2%, +oo]

for all x € R, . Then, F is a subadditive set-valued function of the semigroup R,
to the Banach space R such that values of F' are nonempty, closed and convex, but
F still does not have any additive selection function.

To prove the latter fact, following [14], assume on the contrary that f is an
additive selection function of F. Then, by [1, Theorem 2.1], f can be extended
to an additive function g of R to itself. Moreover, we can note that

g(x)=f(2) € F(z) = [2?, +oo],

and thus z? < g(x) for all x € R, . Therefore, g is bounded below by 0 on R, .
Thus, by [1, Corollary 2.5], there exists a number ¢ € R such that g (z) = cx
for all # € R. Hence, we can already infer that 2 < g(z) = cz, and thus = < ¢
for all x € R with z > 0. This contradiction proves the the required assertion.

Unfortunately, the set-valued function F' of Pales is defined only on a semigroup.
Therefore, in view of the counterexamples of A. Szdz and G. Széz [64], Godini
[21], Sablik [45], Paganoni [35], Forti and Schwaiger [11], Forti [10], Gajda
[12], Rassias and Semrl [41], Gavruta [16], Kazhdan [27], and Spakula and
Zlatos [50], it seems to be of some interest to find some reasonable extensions of
the function F' to R.
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This problem and some of its immediate generalizations, motivated by the
results of Aczél et al. [2], were posed by the present author at some special
courses for students and several talks with colleagues. However, no answers have
been obtained. Therefore, it seems reasonable to present here some possible solu-
tions. These will also well illustrate the appropriateness of our relational methods
offered in [63], where we have only considered a natural totalization of F.
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1. RELATIONS AND FUNCTIONS

A subset F of a product set X xY is called a relation on X to Y. If in
particular F C X 2, then we may simply say that F is a relation on X . Thus, a
relation on X to Y is also a relation on X UY.

If F is a relation on X to Y, then for any x € X and A C X the sets
Flz)={yeY: (z,y)€F} and F[A] = F(a) are called the images
of x and A under F, respectively.

Instead of y € F'(z) sometimes we shall also write = F'y. Moreover, the sets
Dp={ze€eX: F(x)#0} and Rp = F[X]| = F[Dp] will be called the
domain and range of F', respectively.

If in particular Dp = X, then we say that F' is a relation of X to Y, or that F
is a total relation on X to Y. While, if Rp =Y, then we say that F'is a relation
on X onto Y.

If Fisarelationon X to Y, then F'=J cx {2} xF(z)=U,cp, {z}xF(x).
Therefore, a relation F' on X to Y can be naturally defined by by specifying F'(z)
for all x € X, or by specifying Dr and F(z) for all x € Dp.

For instance, if F is a relation on X to Y, then the inverse relation F~! of F
can be naturally defined such that F~1(y)={z€ X: ye F(z)} forall yeY.
Thus, we also have F~' = {(y,z): (z,y) € F}.

Moreover, if in addition G is a relation on Y to Z, then the composition relation
GoF of G and F can be naturally defined such that (Go F )(z) = G[F(x)] for
all z € X. Thus, we also have (GoF)[A]=G[F[A]] forall AC X.

In particular, a relation f on X to Y is called a function if for each = € Dy
there exists y € Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may simply write f(x) =y in place of f(z)={y}.

A relation F on X to Y can be naturally identified with the set-valued function
§ defined by F(z) = F (x) for all z € X. However, thus in contrast to F' C X xY
we have § C X xP(Y). Therefore, F' is a more convenient tool than F.

If F'is a relation on X to Y, then a subset ® of F'is called a partial selection
relation of F'. Thus, we also have Dg C D . Therefore, a partial selection relation
® of F may be called total if Dg = Dp .

In the literature, the total selection functions of a relation F' are usually called
the selections of F. Thus, in particular, the Axiom of Choice can be briefly ex-
pressed by saying that every relation F' has a selection.

If Fisarelationon X to Y and U C X, then the relation F'|U = FN(UxY)
is called the restriction of F' to U. Moreover, F' and G are relations on X to Y
such that Dp C Dg and F = G| Dp, then G is called an extension of F'.

acA

2. COMPUTATIONS WITH SETS

A function x of aset X to itself is called an unary operation on X. Moreover, a
function * of X? to X is called a binary operation in X. In these cases, for
any x,y € X, we usually write z* and z *y in place of *(z) and *((m, y)),
respectively.

A set X, equipped with a binary operation +, is called a groupoid. Instead of
groupoids, it is usually sufficient to consider only semigroups (associative groupoids)
or even monoids (semigroups with zero).
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However, several definitions on semigroups can be naturally extended to
groupoids. For instance, if X is a groupoid, then for any z € X and n € N,
with n # 1, we may naturally define nxz = (n — 1)z + = with the convention
that lz ==.

Moreover, for any n € N and A C X we may also naturally define n A =
{na :oa € A}. And, for any A, B C X, we may naturally define A+ B =
{ a+b: a€A, beB } . Thus, for instance, 2 A can be easily confused with the
possibly larger set A + A.

If in particular X is a group, then for any k£ € Z and A C X we may also define
kA= {ka Doa EA}. And, for any A, B C X, we may also write —A4A =(—-1)A4
and A— B = A+ (—B) despite that the family P(X) is, in general, only a
monoid with involution.

If more specially X is a vector space over K, then forany A € K and A C X
we may also define A A = {)\a ca€e A } Thus, only two axioms of a vector
space may fail to hold for P(X). Namely, only the one point subsets of X can
have additive inverses. Moreover, in general we only have (A+pu)ACA A+ pA.

A subset A of a groupoid X is called additive, subadditive and superadditive if
A=A+A, ACA+A and A+ A C A, respectively. Moreover, for some n € N,
the set A is called n—homogeneous, n—subhomogeneous and n—superhomogeneous
if A=nA, ACnA and nA C A, respectively.

In particular, a subset A of a group X is called symmetric if A = —A. Moreover,
for some A € K, a subset A of a vector space X over K is called A—affine,
A—subaffine and A-superaffineif A=XA+(1-A)A, ACAA+(1-)X)A and
AMA+(1—-X)AC A, respectively.

Thus, a subset A of a vector space X over R may be called convex if A is
[0, 1]-superaffine in the sense that A is A—superaffine for all A € [0, 1]. Note
that the inclusions 0A + (1 —-0)A C A and 14+ (1 —-1) C A always hold.
Therefore, we may take here |0, 1[ in place of [0, 1].

3. COMPUTATIONS WITH INTERVALS

In the set R =RU{—00, +00} of the extended real numbers, beside the usual
ordering, we shall only consider some restricted addition and multiplication. Thus,
in contrast some recent trends, expressions like 0 (4+00) and —oo+ (+00) will not
be defined.

Moreover, for any a, b € R, with a < b, we shall write [a, b] ={z €R: a <
x<b},

[a,b[={z€R: a<xz<b} and Ja,b]={z€R: a<z<b}.

Thus, we have [a, a] = {a} and [a, a[=]a, a] = 0. Therefore, we shall usually
assume that a <b.

Concerning half-open intervals, in the sequel we shall only need some particular
cases the following obvious facts.

Theorem 3.1. If a, b€ R and c € RU{+o0} such that b < c, then

a+ [b,c[=[a+b,a+c].
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Corollary 3.2. If a € R and b€ RU{+oc0} such that a <b, then

la,b[=a+ [0,—a+Db].

Theorem 3.3. If a ¢ R, b€ RU{+oo} such that a < b, then for any A € R

we have
{0} if A=0;
Aa,b[ =< [Aa, Ab[ if A>0;
AL, Aa] if A<O.

Lemma 3.4. If a,b€ RU {400} such that 0 <a, b, then

[0,a] +[0,b][=[0,a+b].

Hint. If x € [0,a+b[ and a, b # 400, then by taking y = a(a +b) 'tz and
z=>b(a+b) "tz we can easily see that y € [0, a[ and z € [0, b[ such that
x =y + z. Therefore, [0,a+b[ C [0,a[+]0,b].

While, if for instance a = 400, then we also have a + b = +oo, and thus
[0, a+b[ =10, a[. Hence, since 0 € [0, b[, and thus [0, a[ C [0,a[+]0, b][,
it is already clear that the required inclusion is again true.

Theorem 3.5. If a,c € R and b,d € RU {400} such that a <b and c < d,
then
[a, b[ +[e,d[ = [a+ec, b+d].

Proof. By Corollary 3.2 and Lemma 3.4, we have

[a,b[+[c, d[=a+][0,—a+b]+c+][0, —c+d][=a+c+ [0, —a+b[+[0, —c+d]|
=a+c+ [0, —a+b—c+d][=a+c+ [0, —(a+c)+b+d][= [a+c, b+d].

Remark 3.6. In the last section of the paper, we shall also need some similar
results for the infimuma and suprema of subsets of R.

For instance, if A and B are nonvoid subsets of R, then it can be easily shown
that

inf(A+ B) =inf(A) + inf(B) and sup(A+ B) =sup(A) +sup(B).

4. ADDITIVE AND HOMOGENEOUS RELATIONS

Analogously to the definitions of additive, subadditive and superadditive func-
tions, studied in [1, 44, 23, 28], we may also naturally have the following
Definition 4.1. A relation F' on one groupoid X to another Y is called

(1) additive if F(x+ y)=F(z)+ F(y),

(2) subadditive if F(z+ y) C F(z)+ F(y),

(3) superadditive if F(x)+ F(y) C F(x+ y)
forall x,ye X.
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Remark 4.2. Moreover, the relation F' may, for instance, be naturally called semi-
additive (left-quasi-additive) if the equality F (z+ y) = F(x)+ F(y) is required
to hold only for all z, y € Dp (x € Dp and y € X ).

Furthermore, if in particular X has a zero element ( X is a group ), then the rela-

tion F' may, for instance, be naturally called left-zero-additive (inversion-additive)
if F(z)=F(0)+ F(z) (F(0)=F(z)+ F(—x)) forall x € X.

Definition 4.3. For some n € N, a relation F' on one groupoid X to another Y
is called

(1) n-homogeneous if F (nz)=nF(x),

aj)?

(2) n-subhomogeneous if F(nz) C nF(
(3) mn—superhomogeneous if n F(z) C F(nx)

for all x € X.

Remark 4.4. Moreover, the relation F' may, for instance, be naturally called
n—semihomogeneous if the equality F'(nx) = n F(x) is required to hold only for
all x € Dp.

Furthermore, for some A C N, the relation F may for instance, be naturally
called A-homogeneous if it is n—homogeneous for all n € A.

The following two simple theorems reveal some intimate connections between
additivity and homogeneity properties.

Theorem 4.5. If F is a superadditive relation on one groupoid X to another Y,
then F' is N-superhomogeneous.

Corollary 4.6. If f is an additive function of one groupoid X to another Y, then
f 18 N-homogeneous.

Theorem 4.7. If F is a subadditive relation on a groupoid X to a vector space
Y over Q such that the value F(x) is n~*-superaffine for all x € X and n € N,
then F' is N-subhomogeneous.

Proof. If x € X and n € N such that F'(nxz) C nF(z), then we also have

F((n+1)z) = F(nz+z) C F(nz)+F(z) CnF(z)+ F(z) = F(z)+nF(x)
= (n+1)((n+ 1) F(@)+ (1= (n+ 1)) F(2)) € (n+1) F(a).

Definition 4.8. A relation F on one group X to another Y is called odd if
F(—z)=—F(x) forall z € X.

Remark 4.9. Quite similarly, the relation F may be naturally called even if
F(—x)=F(x) forall z € X.

Moreover, the relation F' may, for instance, be naturally called semi-subodd if
F(—x)C —F(x) forall z € Dp.

However, by the following obvious theorem, some further similar weakenings of
Definition 4.8 need not be introduced.
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Theorem 4.10. If F is a relation on one group X to another Y, then the
following assertions are equivalent :

(1) F is odd;

(2) F(—xz)C —F(x) forall x € X;

(3) —F(z) C F(—xz) forall z € Dp.

The fact that odd relations are more important than the even ones is apparent
from the following two basic theorems.

Theorem 4.11. If f is an additive function of one group X to another Y, then
f 1s odd.

Theorem 4.12. If F is a nonvoid, odd and superadditive relation on one group
X to another Y, then 0 € F(0) and F is quasi-additive.

Remark 4.13. This theorem can be improved by assuming only that Y is a
monoid and F is quasi-odd in the sense that 0 € F(z)+ F (—x) for all z € Dp.

To see the importance of odd relations, it is also worth mentioning that, by using
an obvious analogue of Definition 4.3, we can also easily prove the following

Theorem 4.14. If F is an odd, n—subhomogeneous (mn-superhomogeneous)
relation on one group X to another Y, for some n € N, then F is —n—subhomo-
geneous ( —n—superhomogeneous ).

Hence, by Corollary 4.6 and Theorem 4.11, it is clear that in particular we also
have

Corollary 4.15. If f is an additive function of one group X to another Y, then
Z—homogeneous.

By using an obvious analogue of Definition 4.3, we can also easily prove the
following

Theorem 4.16. If F' is a A—subhomogeneous ( A\—superhomogeneous ) relation on
one vector space X over K to another Y, for some X € K\ {0}, then F is
A~ —superhomogeneous (A~ -subhomogeneous ).

Proof. Namely, if F' A-subhomogeneous, then we also have
A F(@)=A""F(AA " z) c ATIAF (A e) =F(A )
for all z € X. Therefore, F is A~!-superhomogeneous.
Remark 4.17. In the sequel, a relation F' on one vector space X over R to

another Y will be called convex-valued if F'(z) is a convex subset of Y for all
z e X.

Moreover, the relation F' will be called convex if it is A—superaffine for all
A € [0,1] in the sense that AF(z)+ (1 —X)F(y) C F(Az+ (1—X)y)
for all z,y € X.

Note that thus a convex relation is always convex-valued, but the converse state-
ment need not be true. Moreover, the relation F' is convex if and only if it is a
convex subset of the product space X xY.

However, it is now more important to note that a subset A of Y is convex if

and only if the relation X x A is convex. Therefore, the definition and properties
of convex sets can also be derived from those of convex relations.
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5. THE GLOBAL NEGATIVE OF A RELATION

Definition 5.1. For any relation F' on one group X to another Y, we define a
relation F* on X to Y such that

FMNx)=—F(—x)
for all X . Moreover, we also define F% = FnNF".
Remark 5.2. Thus, we have Dpr = —Dp and
Fr={(-z,-y): (z,y)eF}.
Therefore, the relation F” will be called the global negative of F. (See [18].)

Remark 5.3. The partial negatives —F and FVY of F can defined such that
—F(z) = —F(z) and FY(x) = F(—xz) for all z € X. Note that any one of the
above three negatives can be expressed in terms of the other two. Moreover, —F
can easily be confused with F.

Concerning the operations A and A, the following simple theorems have been
proved in [63].
Theorem 5.4. For any relation F on one group X to another Y, we have

(1) F/\ — F/\/\ ; (2) FA — FA/\ — F/\A ;: (2) FA — FAA.

Remark 5.5. Thus, A is an involution and A is an idempotent operation on the
family P(X xY') of all relations on X to Y. Moreover, A and A commute, and
F* is A-invariant. That is, F'? is a fixed point of A.

Theorem 5.6. For any relation F on one group X to another Y, the following
assertions are equivalent :

(1) F is odd; (2) F”" is odd;
(3) F=F"; (4) F=F*; (5) FN=F".

Remark 5.7. In this respect, it is also worth mentioning that F'is quasi-odd if and
only if Dp = Dps . Moreover, F? is total if and only if F is total and quasi-odd.

From Theorem 5.7, by Theorem 4.11, it is clear that in particular we have

Corollary 5.8. If f is an additive function of one group X to another Y, then
f=fr=re
Theorem 5.9. For any relation F on one group X to another Y,

(1) F* is the largest odd partial selection relation of F ;
(2) F* is the largest odd partial selection relation of F™ .

Proof. By definition, we have F2 = FNFEF C F. Therefore, F? is a partial
selection relation of F'. Moreover, by Theorem 5.4, we have F*" = F» . Therefore,
by Theorem 5.6, F'* is always odd.

On the other hand, if ® is an odd partial selection relation of F', then by
Theorem 5.6 we have ® = ®2. Moreover, by the corresponding definitions, we
have ® C F', and hence ®4 C F*. Therefore, ® C F* also holds.

Hence, it is clear that (1) is true. Moreover, by Theorem 5.4, we have F* = F/N2,
Therefore, (2) can be immediately derived from (1). by writing F” in place F'.
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Corollary 5.10. If F is a relation on one group X to another Y and ® is an
odd partial selection relation of F, then ® C F* .

Remar 5.11. In contrast to A, the operation A is not compatible with most of
the set and relation theoretic operations. Moreover, the relation F2 fails to inherit
several basic properties of F'.

6. THE HYERS TRANSFORM OF A RELATION

Definition 6.1. If F'is a relation on a group X to a vector space Y over Q, then
for any ke Z* =7\ {0} we define a relation Fy on X to Y such that

Fp(z) =k 'F(kz)

for all z € X.
Remark 6.2. Thus, we have Dp, = {9: eX: kzxe DF} and

Fp,={(z,y) e XxY : (kz, ky)eF}.

The relation Fj, or the family ( Fy)rez+ will be called the Hyers transform of F'.
Though, in contrast to Pélya and Szeg6 [37, pp. 17, 171], Hyers [24] originally
used the functional case of the subfamily ( Fon)pen -

The set-valued case has been first studied by W. Smajdor [47] and Gajda and
Ger [14]. For some further developments, see Popa [38], Nikodem and Popa
[34], Lu and Park [30] and the present author [58, 60].

Remark 6.3. Note that if in particular X is also a vector space over QQ, then we
may also naturally define F(z) = A"'F(Az) forall x € X and A € Q\ {0}.

Concerning the relations F}, the following simple theorems have also been
proved in [63].

Theorem 6.4. If F is a relation on a group X to a vector space Y over Q, then
for any k € Z*

(1) F is k—-subhomogeneous if and only if Fy C F';
(2) F is k-superhomogeneous if and only if F C Fj .

Corollary 6.5. If F is as in Theorem 6.4, then for any k € Z* the relation F is
k—homogeneous if and only if F' = F} .
Hence, by Corollary 4.15, it is clear that in particular we also have

Corollary 6.6. If f is an additive function of a group X to a vector space Y over
Q, then f = fr forall k€ Z*.

Moreover, as an immediate consequence of Theorem 6.4, we can also state

Corollary 6.7. If F is a relation on one group X to another Y and ® is a
k—-superhomogeneous partial selection relation of F, for some k € Z*, then
d C Fy .
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Theorem 6.8. If F is a relation on a group X to a vector space Y over Q, then
for any k, 1l € Z* we have

(1) (Fx)i=(F)r = Fr;

(2) (Fp)"=(F")p=F_p; (3) (Fy)®=(F®)p=F,NF_p.

Hence, it is clear that in particular we also have
Corollary 6.9. If F' is as in Theorem 6.8, then
(1) FN=F_y; (2) FA=FNF_;.

Moreover, from Theorem 6.8, by using Theorem 5.6, we can immediately get

Corollary 6.10. If F is an odd relation on one group X to another Y, then F}
s also odd for all k € Z* .

7. TWO SUPERHOMOGENIZATIONS OF A RELATION

Definition 7.1. For any relation F' on a group X to a vector space Y over Q,
we also define

F* = ﬂ F, and F* = ﬂ F.
neN keZ*

Remark 7.2. Thus, we have

F*CcF*CcFh =F and F*CchNF ,=FNF"=F*".

Concerning operations * and *, the following simple theorems have also been
proved in [63].

Theorem 7.3. If F is a relation on a group X to a vector space Y over QQ, then
the following assertions are equivalent :

(1) F is N-superhomogeneous ; (2) FCF*; (3) F=F*.

Theorem 7.4. If F is a relation on a group X to a vector space Y over Q, then
the following assertions are equivalent :

(1) F is Z*—-superhomogeneous ; (2) FCF*; (8) F=F*.
Hence, by Corollary 4.15, it is clear that in particular we have

Corollary 7.5. If f is an additive function on a group X to a vector space Y

over Q, then f= f*= f*.

Theorem 7.6. If F is a relation on a group X to a vector space Y over QQ, then
(1) FN* = F*\; (2) Fb* = [* = [+
(3) (Fk)*:(F*)k for all ke Z*; (4) F**=TF~*.
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Remark 7.7. In this respect, it is worth noticing that

= () F-. and (F*),= () Fu
neN neN

for all k € Z*.

Theorem 7.8. If F is a relation on a group X to a vector space Y over Q, then
(1) FN* = F*N = F*; (2) F% = F*> = F*;
(3) (Fk)* = (]—7’*)]€ fOT all ke 7Z* ; (4) F** — Fex — ¥ — F*

From Theorems 7.6 and 7.8, by using Theorem 5.6, we can immediately get

Corollary 7.9. If F is an odd relation on a group X to a vector space Y, then
F* and F* are also odd.

Theorem 7.10. If F is a relation on a group X to a vector space Y over Q,
then

(1) F* is the largest N—superhomogeneous relation contained in F ;
(2) F* is the largest Z*—superhomogeneous relation contained in F .
Corollary 7.11. If F is a relation on a group X to a vector space Y over Q and

¢ is an N-superhomogeneous (7Z*—superhomogeneous) partial selection relation of
F, then ® C F* (& C F*).

Remar 7.12. In contrast to F' — F}, the operations x and % are not compatible
with most of the set and relation theoretic operations. Moreover, the relations F*
and F™ fail to inherit several basic properties of F'.

8. THE RELATIONAL EQUIVALENT OF A SET-VALUED FUNCTION
OF ZsoLT PALES

Definition 8.1. Define
R, = [0, 4o0] and o(x)==x

for all x e R, .

Then, the function ¢ and the set R, can easily be seen to have the following
useful properties.

Theorem 8.2.
(1) ¢ is increasing and convez;
(2) ¢ is superadditive and ¢(0) =0;
(3) ¢ is [0, 1]-subhomogeneous and [1, +o0 [-superhomogeneous .
Proof. By two well-known theorems in calculus [51, (4.18) and (4.47) ], assertion
)

)]
(1) is immediate from the facts that ¢’(z) =2z >0 and ¢”(x) =2 > 0 for all
reR,.
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Moreover, if x € R, and 0 < A <1, then by using the second parts of (1) and
(2), we can easily see that

p(Az)=p(Az+(1-X)0) <Ap(z)+ (1= X)p(0) = Ap(z).

Therefore, the first part of (3) is true. Hence, the second part of (3) can be imme-
diately derived by using an functional analogue of Theorem 4.16.

Finally, to complete the proof, we can note that if x, y € R, , then 0 <2zxy,
and thus

p@)+oy)=2>+y* <z +y* +2zy=(z+y)’=p(z+y).

Therefore, the first part of (2) is also true.

Remark 8.3. Because of the above non-direct proof of (1), it is worth noticing
that by an improvement of Rathore’s [42, Theorem 1] the superadditivity of ¢
on |0, +oo| can also be immediately derived from the fact that == '¢(z) =2 <
2z = ¢'(x) forall x €]0, 400 [. Moreover, by the second part of (2), the function
p is zero-additive.

In this respect, it is also worth mentioning that if f is a superadditive function
of R, to itself, then f is increasing and f(0) = 0. Moreover, by Matkowski
[31, Lemma 2], f is differentiable at 0 and f’(0) = ir>1f0 =t f(x).

In connection with Theorem 8.2, it is also worth mentioning that by Rosenbaum
[44, Theorem 1.4.6] a finite-valued convex function is subadditive if and only if it
is [1, 400 [-subhomogeneous. Moreover, by Burai and Szédz [8, Corollary 4.5 |, a
2-homogeneous real-valued function is subadditive if and only if it is 2 ~!-subaffine.

Theorem 8.4.

(1) R, is a closed and conver;

(2) R, =R, + R, and R=R, —R_;

(3) Ry =AR, if A>0 and —R, =AXR, if A<0.
Proof. By the corresponding definitions, it is clear that (1) is true. Moreover, we
can note that (3) and the first part of (2) are particular cases of the corresponding
statements of Theorem 3.3 and Lemma 3.4. While, to prove the second part of (2)

it is enough to note that 0 € R, , and thus R, C R, — R, and R, C R, —R_.
Therefore, R=R, U(-R,) C R, — R, also holds.

Theorem 8.5. For any x, y € R, the following assertions are equivalent :

(1) z<y; (2) —z+yeRy; (3) yex+R,.
Proof. Namely, we evidently have

r<y <= 0<—=z2+y <<= —-zrz+yeR, < yecx+R,.
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Remark 8.6. Therefore, by defining a relation © on R such that
O(t)=t+R,

for all t € R, we can state that © is the usual inequality relation on R. Moreover,
it is also worth noticing that by [54, Theorem 3.2]|, © is the unique translation
relation on R such that ©(0) =R, .

The importance of translation relations lies mainly in the fact that each vector
topology can be derived from a family of translation relations by [54]. Moreover,
the multiplicative forms of translation functions can be used to extended various
algebraic structures by [52] and [56] and the references therein.

Now, in addition to Definition 8.1, we may also naturally introduce the following

Definition 8.7. Define a relation ® on R, to R such that

forall z € R, .

Remark 8.8. Thus, for all x € R, we also have
P (z) =22+ [0, +oo[= [2?, +oo].

Therefore, ® corresponds to the set-valued function of Zs. Péles mentioned earlier.

Moreover, it also worth noticing that

®(z) =p(x)+ R, =0 (¢(z)) = (00p)(x)

for all z € R, . Therefore, ® =0 o p.

The relation ® can also be easily seen to have the following useful properties.
Theorem 8.9.

(1) @ is decreasing and convez;

(2) @ is closed and convez valued ;

(3) @ is zero-additive and subadditive ;

(4) R=®(z)—P(y) forall z,yeR,;

(5) @ is [0, 1]-superhomogeneous and [1, 400 [-subhomogeneous .
Hint. If x,y € R, such that © < y, then by (1) in Theorem 8.2 we have

o(z) < p(y). Hence, by Theorem 8.5, it follows that ¢(y) € ¢(x)+ R, . Now, by
using Definition 8.7 and (2) in Theorem 8.4, we can see that

P(y) =¢(y) + R, C p(2) + Ry + Ry = p(z) + Ry = O(2).

Therefore, ® is decreasing.
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If x,y € R,, then by (2) in Theorem 8.2 we have ¢(x)+ ¢(y) < ¢(z+vy).
Hence, by Theorem 8.5, it follows that ¢(x+y) € ¢(z) + ¢(y) + R, . Now, by
using Definition 8.7, we can see that

®(r+y)=¢(r+y)+R. Co(x)+e(y)+ R+ R,
=)+ Ri+ oy + Ry =2 (2)+ 2(y).
Therefore, ® is subadditive.
If x,y € R, and 0 < A <1, then by (1) in Theorem 8.2 we have
p(Az+(1=Ny) < Ap@)+(1-A)p(y).
Hence, by Theorem 8.5, it follows that
Ao(@)+(1=XN)e(y) ep(Az+(1-XN)y) + R, .
Now, by using Definition 8.7 and (3) and (2) in Theorem 8.4, we can see that
A® () +(1-2)@(y) = A(p(2) + R.) +(1-2) (p () + R,) =
Ap(2) £ AR, +(1=Mp(y) + (1 - ARy = Ao (2)+ Ry + (1 -A)e(y) + R,
=dp(@)+(1-Ne@+R,+R, C p(Az+(1-N)y)+ R, + R, + R,
=p(Az+(1-Ny) + R, =2(Az+(1-)\)y).
Therefore, ® is convex.

Remark 8.10. The above theorem can be proved more directly by using the results
of Section 3 instead of Theorems 8.4 and 8.5.

However, the above arguments can also be well used in the case when R, and
¢ are replaced by some more general objects.

9. ODD AND SUPERHOMOGENEOUS PARTIAL SELECTION RELATIONS OF &

Remark 9.1. In the sequel, to apply the transformations A and x to ®, we shall
consider ® as a relation on R.

Thus, by the corresponding definitions, for any x € R we have
0 if =<0,
o ={ .
[z, +oo[ if z2>0.
Theorem 9.2. We have
4 ={(0,0)}.
Proof. By Remark 9.1, for any x € R, we have
0 it x>0,
o(-0)={ 4 |
[z°, +o0| if x<0.
Hence, by Theorem 3.3, it is clear that
0 if >0,

o = —O(—x) =
(2) (=) {]—oo,—xQ] if z<0.
Now, by the corresponding definitions, we can also easily see that
0 if x#£0
4(z)=(PNP")(z) = P(x)NO" () = ’
@) = (#ne") (@) = (@ e @ ={ T

Therefore, the required equality is also true.
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Theorem 9.3. For a relation 2 on R, the following assertions are equivalent :

(1) Q=0 or Q={(0,0)};
(2) S is an odd partial selection relation of P .
Hint. If (2) holds, then by Corollary 5.10 and Theorem 9.2 we have
QCc o =1{(0,0)}.
Therefore, either Q@ =0 or Q= {(0,0)}. Thus, (1) also holds.

Theorem 9.4. We have
o ={0} xR,.

Proof. If x € R, then by Remark 9.1, for any n € N, we have
0 if <0,
P(nzx)=
(ne) {[n2x2, +oo[ if x>0.
Hence, by Theorem 3.3, it is clear that

0 it x<0,

(I)n(x):n_lcb(nm)Z{[nxz’ +oo| if xz>0.

Now, by the corresponding definitions, we can also easily see that

(‘P*)(ZE)Z(ﬁl%)(@:ﬁlq’”(x):{[o,®+oo[ i zig’.

Therefore, the required equality is also true.

Theorem 9.5. For a relation 2 on R, the following assertions are equivalent :

(1) Q is an N-superhomogeneous partial selection relation of ® ;
(2) Q={0} x A for some N-superhomogeneous subset A of R, .
Hint. If (1) holds, then by Corollary 7.11 and Theorem 9.4 we have
QCP*={0} xR,.
Therefore, @ = {0} x A with A= Q(0) C R, . Moreover, we can also see that
nA=nQ(0)C2(n0)=02(0)=A4
for all n € N. Therefore, A is N-superhomogeneous. Thus, (2) also holds.

Theorem 9.6. For a relation 2 on R, the following assertions are equivalent :

(2) Q is a superadditive partial selection relation of ® ;

(1) Q={0} x A for some superadditive subset A of R, .

Hint. If (2) holds, then by Theorem 4.5 € is N-superhomogeneous. Thus, by
Theorem 9.5, we have ©Q = {0} x A for some subset A of R, . Moreover, we can

also see that
A+A=0(0)+Q2(0)C Q(0)=A.

Therefore, A is superadditive. Thus, (1) also holds.
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Remark 9.7. If x € R, , then by the corresponding definitions we also have

-1 2

on(x)=n""p(nx)=nz

for all n € N, and thus

lim ¢, (ZB) =

n—oo

{ 0 if =0,
4+oo if >0.

Therefore, ¢ is also rather irregular in the sense of [22, Definition 3.1].

10. SOME BASIC PROPERTIES OF THE GLOBAL NEGATIVE ®” OF ®
Remark 10.1. By defining R_ =] —o00, 0], for any x € R_, we have
OM(2) = —0 () = —(p(—2) + R,) = —p(—2) — R, = () + R_.

However, the basic properties of ®”" can be more easily derived from those of ®.

For instance, by considering ®” as a relation on R_, from Theorem 8.9 we can
immediately get the following

Theorem 10.2.
(1) ®" isincreasing and conver ;
(2) ®" is closed and convex valued ;
(3) ®" is zero-additive and subadditive ;
(4) R="z)-B(y) forall z,yeR_;
(5) ®" is [0, 1]-superhomogeneous and [1, +oo [-subhomogeneous .
Hint. If x,y € R_ such that z <y, then —x, —y € R, such that —y < —x.

Therefore, by (1) in Theorem 8.9, we have ®(—z) C ®(—y). Hence, it is clear
ONz) = —-P(—2x) C —P(—y) = ®"(y). Therefore, " is increasing.

If x,y € R_ and 0 < X <1, then again by (1) in Theorem 8.9 we have
AD(—z2)+(1-N)®(—y) C ®(A(—2)+(1-X)(-y)) =2 (—(Az+(1-X)y)) .
Hence, it is clear that

ADMx) + (1= N)B () = A (=@ (—2)) + (1= A) (=B (—y))
= —(A2(—2)+ (1=N)®(—y)) C = (—(Az+(1-N)y))
=0 N (Az+(1-N)y).

Therefore, ®” is also convex.

In the following theorem, we shall again consider ®” as a relation on R.
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Theorem 10.3. We have
(1) &7 ={(0,0)}; (2) &/ = {0} xR_.

Proof. By Theorems 5.4 and 9.2, we have ®"* = ®" = {(0, 0)}. Moreover, by
Theorems 7.6 and 9.4, we have

oM =0 = ({0} xR,)" = {0} x (-R,) = {0} x R_.
Now, analogously to Theorems 9.3, 9.5 and 9.6, we can also easily establish the
following theorems.
Theorem 10.4. For a relation 0 on R, the following assertions are equivalent :
(1) Q=0 or Q={(0,0)};
(2) Q is an odd partial selection relation of ®" .

Theorem 10.5. For a relation 2 on R, the following assertions are equivalent :
(1) Q is an N-superhomogeneous partial selection relation of ®" ;

(2) Q={0} x A for some N-superhomogeneous subset A of R_.

Theorem 10.6. For a relation 0 on R, the following assertions are equivalent :
(1) Q is a superadditive partial selection relation of ®” ;
(2) Q={0} x A for some superadditive subset A of R_.

Remark 10.7. The latter three theorems can also be easily derived from Theorems
9.3, 9.5 and 9.6.

For instance, if (1) in Theorem 10.6 holds, then Q" C ®"" = & . Moreover, Q"
is also superadditive. Thus, by Theorem 9.6, Q" = {0} x B for some superadditive
subset B of R, . Hence, by noticing that Q = Q" = ({0} x B)A ={0}x(—B)
and —B is a superadditive subset of R_, we can see that (2) in Theorem 10.6 also
holds.

11. AN ALMOST ODD EXTENSION OF & TO R

Definition 11.1. Define R* =R_\ {0}, and

U =0"|R* and F=oUV.
Remark 11.2. Thus, for any = € R, we have
O(x) if x>0,
U(z) if z<0.

Therefore, F'is an extension of both ® and ¥. Moreover, by the corresponding
definitions, we also have

F(z) = {

F(z) = (®UW)(2) = &(a) U¥(x) :{

[22, +o0 | it >0,

] -0, —2?] if x<0.

By using the corresponding properties of ® and ®”, we can also easily prove
the following



20 A. S7ZAZ

Theorem 11.3.

(1) F is subadditive,

(2) F is closed and convex valued ;

(3) F(—x)=—F(x) foral zeR*=R\{0};

(4) F is [0, 1]-superhomogeneous and [1, +o0o [-subhomogeneous ;
Hint. To prove (1), note that if for instance x, y € R such that x, y < 0, then by
Remark 11.2 and (3) in Theorem 10.2 we have

F(rx+y)=0"(z+y)C ®(z)+ 0" (y) = F(z) + F(y).

While, if for instance z, y € R such that z > 0 and y < 0, then by Remark
11.2 and (4) in Theorem 8.9 we have

F(2) + F(y) = 0(a) + @ (y) = O(2) — ®(—y) = R
Therefore, F'(x+y) C F(z)+ F(y) trivially holds.
Concerning the relation F', we can also easily prove the following
Theorem 11.4. We have
F%=1{(0,0)}U (F]R*)
Proof. By (3) in Theorem 11.3, we have
FMNz)=—F(—z) = F(2)
for all z € R with x # 0. Moreover, since F' is an extension of ®, we have
FM0)=-F(0)=-®(0)=-R, =R_.
Hence, by the corresponding definitions, it is clear that
F(z) = (FNFMN)(z) = F(z) N F"z) = { {0y it w=0,
F(z) if x#0.
Therefore, the required equality is also true.
Now, in contrast to Theorem 9.3, we can only prove the following
Theorem 11.5. For a relation 2 on R, the following assertions are equivalent :

18 an odd partial selection relation o ;
1) Qi dd al selects lati f F
(2) Q=AUA" for some partial selection relation A of {(0,0)} U (®|R*).

Hint. If (1) holds, then by Corollary 5.10 and Theorem 11.4, we have
QC F*={(0,0}U(F|R").
Hence, since ® = F'|R, , it is clear that
A=Q[R, C {(0.0)}U(F[E}) = {(0.0)} U (B[R}

Thus, A is a partial selection relation of {(0, 0)}U(® |R*). Moreover, if z € R_,
then since —x € R, and (2 is odd we can easily see that

M (@) = A (~a) = ~(QUR.)(~z) = ~Q(~z) = Q(z) = (2R _)(a).
Hence, it is clear that
Q=(QR,)U(QIR_)=AUA",
and thus (2) also holds.

In addition to Theorem 11.4, we can also easily prove the following
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Theorem 11.6. We have
F*={0} xR,.
Proof. If © € R, then by Remark 11.2, for any n € N, we have
2.2 :
) + f >07
F(nal:):{[n'r 020[2 1 v
| =00, —n2z?] if x<0.
Hence, by Theorem 3.3, it is clear that
2 .
) + f >07
F.(z)=n"'F(nz) = [ne 00[2 1 v
| =00, —nz?] if x<0.

Now, by the corresponding definitions, we can also easily see that

Therefore, the required equality is also true.

Now, analogously to Theorems 9.5 and 9.6, we can also easily establish the
following two theorems.

Theorem 11.7. For a relation 2 on R, the following assertions are equivalent :
(1)  is an N-superhomogeneous partial selection relation of F ;

(2) Q={0} x A for some N-superhomogeneous subset A of R, .

Theorem 11.8. For a relation ) on R, the following assertions are equivalent :

(1) Q is a superadditive partial selection relation of F' ;

(2) Q={0} x A for some superadditive subset A of R, .

12. ANOTHER NATURAL EXTENSION OF ® TO R

Because of the results of [61], we may also naturally introduce the following

Definition 12.1. Define
I'=R*"xR and G=oUT.

Remark 12.2. Thus, for any = € R, we have
O(x) if x>0,
(@) = (#ur)@) =o(@ur@ ={ o7 T

Therefore, G is an extension of both ® and I'. Moreover, by the corresponding
definitions, we also have

G()_{ R if <0,
e (22, +oo| if x>0.

Now, analogously to the the results of Section 11, we can also easily prove the
following theorems.
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Theorem 12.3.
(1) G is closed and convex valued ;
(2) G is subadditive and zero-additive ;
(3) G is [0, 1]-superhomogeneous and [1, +oo [-subhomogeneous ;

Hint. To prove (2), note that if for instance x, y € R such that z < 0, then by
Remark 12.2 we have

G(z)+ G(y) =R+ G(y) =R.

Therefore, G (z+vy) C G(z)+ G(y) trivially holds. Moreover, we also have
G(z)+G(0) =R =G(z).

Remark 12.4. Note that convexity of G on R* is an immediate consequence of
the R*-linearity of G on R* .

Theorem 12.5. We have

G4 ={(0,0)}U (F|R").

Proof. By Remark 12.2, for any « € R, we have

R it >0,
[22, +oo| if 2<0.

6(-a) = {

Hence, by Theorem 3.3, it is clear that

R if x>0,

] -0, —22] if x<0.
Now, by the corresponding definitions, we can also easily see that

{0} if =0,
G%(z)=(GNG")(z) =G(z)NG N(z) = ¢ [2?, +oo] if x>0,
] —o00, —22] if x<0.
Hence, by Remark 11.2, it is clear that the required equality is also true
Theorem 12.6. For a relation 2 on R, the following assertions are equivalent :
(1) Q is an odd partial selection relation of G ;

(2) Q=AUA" for some partial selection relation A of {(0,0)}U(®|R*).
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Theorem 12.7. We have

G*=TU ({0} xR,).

Proof. If z € R, then by Remark 12.2 for any n € N, we have

R if =<0,
[n?22, +oo| if z>0.

G(ne) = {

Hence, by Theorem 3.3, it is clear that

R if =<0,

Gn(x):an(nx):{[nxQ,—}—oo[ if >0.

Now, by the corresponding definitions, we can also easily see that

0 0 0 if >0,
G*(z) = (ﬂ Gn)(x) = () Gn(x)=¢ R if z<0,
n=1 n=1 R, if x=0.

Therefore, by the corresponding definitions, the required equality is also true.
Now, we can also easily prove the following two theorems.

Theorem 12.8. For a relation €2 on R, the following assertions are equivalent :
(1) Q is an N-superhomogeneous partial selection relation of G ;

(2) Q is an N-superhomogeneous relation on R_ to R such that Q(0) CR,.

Theorem 12.9. For a relation €2 on R, the following assertions are equivalent :
(1) Q is a superadditive partial selection relation of G ;

(2) S is a superadditive relation on R_ to R such that G(0) C R,.

13. FURTHER NATURAL EXTENSIONS OF ® TO R

Suppose now that H is a subadditive relation of R to itself such that H is an
extension of ®. Moreover, define

p(z) = inf (H (z)) and q(z) = sup(H (z))

for all z € R.

Then, since H (z) # () for all x € R, it is clear that p and ¢ are functions of
R to RU{—o0} and RU{+oc}, respectively. Moreover, we evidently have

H(z) C [p(x), q(x)]

for all z € R.
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Furthermore, since H (u) = ®(u) = [¢(u), +oo[ for all uw € R, , we can also
at once state that

p(u) = ¢(u) and q(u) = +00

for all u e R, .

On the other hand, by using that H (x+y) C H (z)+ H (y) forall z,y € R,
we can also easily see that

p(z) + p(y) = inf (H (z)) + inf (H (y))
= inf (H () + H (y)) < inf (H(z+y)) =p(z+y)
and

g(z+y)=sup(H (z+y)) <sup(H(z)+ F(y))
= sup (H (z)) +sup (H (y)) = q(x) + q(y)
for all x, y € R. Therefore, p is superadditive and ¢ is subadditive.
Now, if u, v € R, , then we can already see that
p(uto)+p(-v)=plutv)+p(-v)<plu)=epu),
and thus
p(—v) < —(p(utv) =) = —((utv)’—u?) = ~(2u+v)v,
Hence, if v # 0, then by letting u — 400 we can already infer that
p(—v) < —o0, and thus  p(—v) = —o0.
Therefore, for any = € R, we have
B z? if x>0,
p(:c)—{ -0 if  x<0.

It can also be easily seen that

p(—v) Zuitenﬁg+(90(U)—90(U+v))

for all v € R% . Therefore, according to Barton and Laatsch [6], p is just the
maximal superadditive extension of ¢ to R.

Unfortunately, concerning the function ¢ we cannot prove a similar statement.
Namely, if v is a subadditive function of R* to RU {400} and

(2) { 400 if x>0,
€Tr) =

P b(z) if <0,
then it can be easily seen that p is a subadditive.

However, if in addition to the subadditivity of H, we assume that H is closed
and convex valued, then we can note that

{ R if <0 and ¢(x) = +o0,
]

H(e) = —00, q(z)] if x<0 and ¢(x)# +oo.

Hence, it is clear that the implication (1) = (2) is true in the following
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Theorem 13.1. For any relation H of R to itself such that H is an extension of
® , the following assertions are equivalent :

(1) H is subadditive and closed and convex valued ;

(2) there exists a subadditive function 1 of R* to RU{+4o00} such that

H(g;):{] R if <0 and 9 (z)=+oo,

—oo, Y(x)] if =<0 and P (z)# +o0.

Hint. To check the subadditivity of H, note that if for instance z, y € R such

that =,y <0 and (z), ¥(y) < +oo, then ¥ (x+y) < Y(z) +¥(y) < +oo.
Therefore, by a dual of Theorem 3.5, we have

H(z+y)=]-00, ¥(z+y)] C]-o0, P(x)+¢(y)]
=] =00, ¥(z)]+]—o00, ¥(y)] = H(x)+ H(y).

On the other hand, if for instance z, y € R such x <0, 0 <y and ¥ (x) < +o0,
then
H(z)+ H(y)=]-00, ¥(2)] + [¢(y), +oo[=R.

Moreover, if for instance z € R such that x < 0 and 1 (x) = +00, then for any
y € R we have
H(z)+ H(y)=R+ H(y) =R.

Therefore, the inclusion H (x+y) C H (z)+ H (y) trivially holds.

Acknowledgement. The author is indebted to Zsolt Péles for his help leading to
the present simplified determination of the relation H .

REFERENCES

1. J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University
Press, Cambridge York, 1989.
2. J. Aczél, J. A. Baker, D.Z. Djokovié, Pl. Kannappan and F. Radé, Extensions of certain
homomorphisms of subsemigroups to homomorphisms of groups, Aequationes Math. 6 (1971),
263-271.
R. Badora, On approzimately additive functions, Ann. Math. Sil. 8 (1994), 111-126.
4. R. Badora, R. Ger and Zs. Péles, Additive selections and the stability of the Cauchy functional
equation, ANZIAM J. 44 (2003), 323-337.
5. A. Bahyrycz, Forti’s example of an unstable homomorphism equation, Aequationes Math. 74
(2007), 310-313.
6. M. Barton and R. Laatsch, Mazimal and minimal subadditive extensions, Amer. Math.
Monthly 73 (1966), 141-143.
7. A. Bruckner, Minimal superadditive extensions of superadditive functions, Pacific J. Math.
10 (1960), 1155-1162.
8. P. Burai and A. Szdz, Relationships between homogeneity, subadditivity and convexity
properties, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 77-87.
9. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific,
London, 2002.
10. G.L. Forti, Remark 11, Aequationes Math. 29 (1985), 90-91.
11. G.L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C.R. Math. Rep.
Acad. Sci. Canada 11 (1989), 215-220.

o



26

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

A. S7ZAZ

Z. Gajda, On stability of additive mappings, Internat J. Math. Sci. 14 (1991), 431-434.

Z. Gajda, Invariant means and representations of semigroups in the theory of functional
equations, Prace Nauk. Uniw. Slask. Katowic. 1273 (1992), 1-81.

Z. Gajda and R. Ger, Subadditive multifunctions and Hyers—Ulam stability, In: W. Walter
(Ed.), General Inequalities 5, Internat. Ser. Numer. Math. (Birkh&user, Basel) 80 (1987),
281-291.

Z. Gajda, A. Smajdor and W. Smajdor, A theorem of the Hahn—Banach type and its appli-
cations, Ann. Polon. Math. 57 (1992), 243-252.

P. Gavruta, On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings,
J. Math. Anal. Appl. 261 (2001), 543-553.

R. Ger, A survey of recent results on stability of functional equations, Proceedings of the 4th
International Conference on Functional Equations and Inequalities Pedagogical University of
Cracow, 1994, 5-36.

T. Glavosits and A. Szdz, Pointwise and global sums and negatives of binary relations, An.
St., Univ. Ovidius Constanta 10 (2002), 87-93.

T. Glavosits and A. Széz, On the existence of odd selections, Adv. Stud. Contemp. Math.
(Kyungshang) 8 (2004), 155-164.

T. Glavosits and A. Szaz, Constructions and extensions of free and controlled additive rela-
tions, Tech. Rep., Inst. Math., Univ. Debrecen 2010/1, 49 pp.

G. Godini, Set-valued Cauchy functional equation, Rev. Roumaine Math. Pures Appl. 20
(1975), 1113-1121.

E. Gselmann and A. Szaz, An instructive treatment of a generalization of Gavrutd’s stability
theorem, Sarajevo J. Math. 6 (2010), 3—21.

E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq.
Publ., Vol. 31, Amer. Math. Soc., Providence, RI, 1957.

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A
27 (1941), 222-224.

D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math.
44 (1992), 125-153.

D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several
Variables, Birkhduser, Boston, 1998.

D. Kazhdan, On e-representations, Israel J. Math. 43 (1982), 315-323.

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish
Sci. Publ. and Univ. élaski, Warszawa, 1985.

R. G. Laatsch, Extensions of subadditive functions, Pacific J. Math 14 (1964), 209-215.

G. Lu and C. Park, Hyers—Ulam stability of additive set-valued functional equations, Appl.
Math. Lett. (2011). (doi:10.1016/j.aml.2011.02.024)

J. Matkowski, A functional inequality characterizing convex functions, conjugacy and a
generalization of Hélder’s and Minkowski’s inequalities, Aequationes Math. 40 (1990), 168—
180.

K. Nikodem, Additive selections of additive set-valued functions, Univ. u Novom Sadu, Zb.
Rad. Prirod.-Mat. Fak., Ser. Mat. 18 (1988), 143-148.

K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lédz.
Mat. 559 (1989), 1-75.

K. Nikodem and D. Popa, On selections of general linear inclusions, Publ. Math. Debrecen
75 (2009), 239-249.

L. Paganoni, Soluzione di una equazione funzionale su dominio ristretto, Boll. Un. Mat. Ital.
17 (1980), 979-993.

Y.J. Piao, The existence and uniqueness of additive selections for (a, 8)—(8, a) type subad-
ditive set-valued maps, J. Northeast Normal University 41 (2009), 33—40.

Gy. Pdélya and G. Szegd, Aufgaben und Lehrsdtze aus der Analysis I, Verlag von Julius
Springer, Berlin, 1925.

D. Popa, Additive selections of (a, B)—subadditive set valued maps, Glasnik Mat. 36 (2001),
11-16.

D. Popa, Functional inclusions on square-symmetric grupoids and Hyers—Ulam stability,
Math. Ineq. Appl. 7 (2004), 419-428.

Th. M. Rassias, Stability and set-valued functions, In: Analysis and Topology, World Sci.
Publ., River Edge, NJ, 1998, 585-614.



ON A SET-VALUED FUNCTION OF ZS. PALES 27

41. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers—Ulam
stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.

42. S.P.S. Rathore, On subadditive and superadditive functions, Amer. Math. Monthly 72 (1965),
653—-654.

43. B. Rodriguez-Salinas and L. Bou, A Hahn-Banach theorem for arbitrary vector spaces, Boll.
Un. Mat. Ital. 10 (1974), 390-393.

44. R. A. Rosenbaum, Subadditive-functions, Duke Math. J. 17 (1950), 227-247.

45. M. Sablik, A functional congruence revisited, Grazer Math. Ber. 316 (1992), 181-200.

46. A. Smajdor, Additive selections of superadditive set-valued functions, Aequationes Math. 39
(1990), 121-128.

47. W. Smajdor, Subadditive set-valued functions, Glasnik Mat. 21 (1986), 343—-348.

48. W. Smajdor, Subadditive and subquadratic set-valued functions, Prace Nauk. Univ. Slask.
Katowic. 889 (1987), 1-73.

49. W. Smajdor and J. Szczawiiniska, A theorem of the Hahn—Banach type, Demonstratio Math.
28 (1995), 155-160.

50. J. Spakula and P. Zlatos, Almost homomorphisms of compact groups, Illinois J. Math. 48
(2004), 1183-1189.

51. K.R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Inc., Belmont,
California, 1981.

52. A. Szaz, The multiplier extensions of admissible vector modules and the Mikusinski-type con-
vergences, Serdica 3 (1977), 82-87.

53. A. Széz, The intersection convolution of relations and the Hahn—Banach type theorems, Ann.
Polon. Math. 69 (1998), 235—-249.

54. A. Szaz, Translation relations, the building blocks of compatible relators, Math. Montisnigri
12 (2000), 135-156.

55. A. Szaz, Preseminorm generating relations and their Minkowski functionals, Univ. Beogr.,
Publ. Elektrotehn. Fak., Ser. Mat. 12 (2001), 16-34.

56. A. Szaz, Partial multipliers on partially ordered sets, Novi Sad J. Math. 32 (2002), 25-45.

57. A. Szaz, Relationships between translation and additive relations, Acta Acad. Paedagog.
Agriensis, Sect. Math. (N.S.) 30 (2003), 179-190.

58. A. Szdz, An extension of an additive selection theorem of Z. Gajda and R. Ger to vector
relator spaces, Tech. Rep., Inst. Math., Univ. Debrecen 2006/8, 24 pp.

59. A. Széz, An instructive treatment of a generalization of Hyers’s stability theorem, In: Th. M.
Rassias and D. Andrica (Eds.), Inequalities and Applications, Cluj University Press, Cluj-
Napoca, Romania, 2008, 245-271.

60. A. Szdz, Applications of relations and relators in the extensions of stability theorems for
homogeneous and additive functions, Aust. J. Math. Anal. Appl. 6 (2009), 1-66.

61. A. Szaz, Set theoretic operations on box and totalization relations, Int. J. Math. Sci. Appl. 1
(2011), 19-41. ( www.ijmsa.yolasite.com)

62. A. Széz, Sets and posets with inversions, Publ. Inst. Math. (Beograd) (N.S.) 90 (2011),
111-123.

63. A. Szaz, The Hyers—Ulam and Hahn—Banach theorems and some elementary operations on
relations motivated their set-valued generalizations, In: P.M. Pardalos, P. G. Georgiev and
H.M. Srivastava (Eds.), Stability, Approximations, and Inequalities, Springer Optimization
and Its Applications 68 (2012), 631-705.

64. A. Széz and G. Széz, Additive relations, Publ. Math. Debrecen 20 (1973), 259-272.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, H-4010 DEBRECEN, Pr. 12,
HUNGARY
FE-mail address: szaz@science.unideb.hu



