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SET THEORETIC OPERATIONS ON

BOX AND TOTALIZATION RELATIONS

Árpád Száz

Abstract. In this paper, we shall only study the most simple set theoretic opera-

tions on box and totalization relations

Γ(A, B) = A×B and F̃ = F ∪ Γ(Dc
F

, Y ) ,

where A ⊂ X , B ⊂ Y and F is a relation on X to Y with domain DF . The

relation theoretic operations, and several algebraic and topological properties of these

relations, will be studied elsewhere.

This line of investigations is mainly motivated by the fact that the relations

Γ̃(A, B) = Γ̃(A, B) and Γ̃A = Γ̃(A, A)

play an important role in the uniformization of various topological structures such as
proximities, closures and topologies, for instance. Moreover, the relations F̃ can be

used to prove a useful reduction theorem for the intersection convolution of relations.
The latter operation allows of a natural treatment of the Hahn-Banach type extension

theorems.

1. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F is a relation on X to itself, then we may simply say that F is a relation on X.
Thus, a relation F on X to Y is also a relation on X ∪ Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y) ∈ F} and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called
the domain and range of F , respectively. If in particular X = DF , then we say
that F is a relation of X to Y , or that F is a total relation on X to Y . While, if
Y = RF , then we say that F is a relation on X onto Y .
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If F is a relation on X to Y and U ⊂ DF , then the relation F |U = F ∩(U×Y )
is called the restriction of F to U . Moreover, if F and G are relations on X to Y
such that DF ⊂ DG and F = G |DF , then G is called an extension of F .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f (x) = y instead of f (x) = {y} .

Concerning relations, we shall only quote here the following basic theorems
from [ 23 ] .

Theorem 1.1. If F is a relation on X to Y , then

F =
⋃

x∈X

{x }×F (x) =
⋃

x∈DF

{x }×F (x) .

Remark 1.2. By this theorem, a relation F on X to Y can be naturally defined
by specifying F (x) for all x ∈ X, or by specifying DF and F (x) for all x ∈ DF .

Corollary 1.3. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F ⊂ G ;

(2) F (x) ⊂ G(x) for all x ∈ X ; (3) F (x) ⊂ G(x) for all x ∈ DF .

Corollary 1.4. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F = G ;

(2) F (x) = G(x) for all x ∈ X ;

(3) DF = DG and F (x) = G(x) for all x ∈ DF .

Theorem 1.5. If F is a relation on X to Y , then for any A , B ⊂ X we have

(1) F [A ∩B ] ⊂ F [A ] ∩ F [B ] ; (2) F [A ∪B ] = F [A ] ∪ F [B ] .

Theorem 1.6. If F is a relation on X to Y , then for any A , B ⊂ X we have

F [A ] \ F [B ] ⊂ F [A \B ] .

Corollary 1.7. If F is a relation on X onto Y , then for any A ⊂ X we have

F [A ]c ⊂ F [Ac ] .

Remark 1.8. If in particular the inverse F −1 = { (y, x) : (x, y) ∈ F
}

of F is
a function, then the equality also holds in Theorems 1.5 and 1.6 and Corollary 1.7.

Theorem 1.9. If F and G are relations on X to Y , then for any x ∈ X we
have

(1)
(
F ∩G

)
( x) = F (x) ∩G(x) ; (2)

(
F ∪G

)
( x) = F (x) ∪G(x) .
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Theorem 1.10. If F and G are relations on X to Y , then for any A ⊂ X we
have

(1)
(
F ∩G

)
[A ] ⊂ F [A ] ∩G [A ] ; (2)

(
F ∪G

)
[A ] = F [A ] ∪G [A ] .

Remark 1.11. Theorems 1.5, 1.9 and 1.10 can be naturally extended to arbitrary
families of sets and relations.

Theorem 1.12. If F and G are relations on X to Y , then for any x ∈ X and
A ⊂ X we have

(1) ( F \G )(x) = F (x) \G(x) ; (2) F [A ] \ G [A ] ⊂ ( F \G ) [A ] .

Corollary 1.13. If F is a relation on X to Y , then for any x ∈ X and A ⊂ X,
with A 6= ∅ , we have

(1) F c(x) = F (x)c ; (2) F [A ] c ⊂ F c [A ] .

Theorem 1.14. If F is a relation on X to Y , then for any A ⊂ X we have

F c [A ] c =
⋂

x∈A

F (x) .

2. Box and totalization relations

Definition 2.1. For any A ⊂ X and B ⊂ Y , we define

Γ(A, B) = A×B .

Remark 2.2. In particular, we shall also write

ΓA = Γ(A, A) and Γ(a, B) = Γ({a} , B)

for any a ∈ X.

Concerning box relations, the following theorems have been proved in [ 23 ] .

Theorem 2.3. If A ⊂ X and B ⊂ Y , then for any x ∈ X we have

Γ(A, B)( x) =
{

B if x ∈ A ,

∅ if x /∈ A .

Remark 2.4. Thus, in particular if A ⊂ X, then for any x ∈ X we have

ΓA(x) =
{

A if x ∈ A ,

∅ if x /∈ A .
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Theorem 2.5. If A ⊂ X and B ⊂ Y , then for any U ⊂ X we have

Γ(A, B) [U ] =
{ ∅ if U ⊂ Ac ,

B if U 6⊂ Ac .

Remark 2.6. Thus, in particular if A ⊂ X, then for any U ⊂ X we have

ΓA [U ] =
{ ∅ if U ⊂ Ac ,

A if U 6⊂ Ac .

Definition 2.7. For any relation F on one set X to another Y , we define

F̃ = F ∪ Γ(D c
F , Y ) .

Remark 2.8. If Y 6= ∅ , then the relation F̃ may be called the natural totalization
of F . Its usefulness will be cleared up by the forthcoming results.

In particular, for any A , B ⊂ X, the totalizations

Γ̃A = Γ̃A and Γ̃(A, B) = Γ̃(A, B)

may be called the Davis–Pervin and the Hunsaker–Lindgren relations on X, respec-
tively.

The latter relations play an important role in the generalized uniformization of
various topological structures such as proximities, closures, topologies, and filters,
for instance. ( See [ 2 ] , [ 14 ] , [ 21 ] and [ 1, pp. 42 , 193 ] , [ 6 ] , [ 16 ] .)

While, the relations F̃ can be used to prove a useful reduction theorem for the
intersection convolution of relations [ 22 ] . The latter operation allows of a natural
treatment of the Hahn-Banach type extension theorems. ( See [ 17 ] and [ 5 ] .)

Concerning totalization relations, the following theorems have been proved
in [ 23 ] .

Theorem 2.9. If F is a relation on X to Y , then for any U ⊂ X we have

F̃ [U ] =
{

F [U ] if U ⊂ DF ,

Y if U 6⊂ DF .

Corollary 2.10. If F is a relation on X to Y , then for some U ⊂ X we have
F [U ] = F̃ [U ] if and only if either U ⊂ DF or F [U ] = Y .

Corollary 2.11. If F is a relation on X to Y , then for some x ∈ X we have
F (x) = F̃ (x) if and only if either x ∈ DF or F (x) = Y .

Theorem 2.12. If F is a relation on X to Y , then for any x ∈ X we have

F̃ ( x) =
{

F ( x) if x ∈ DF ,

Y if x /∈ DF .
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Corollary 2.13. If F is a relation on X to Y , then F̃ is an extension of F such
that F = F̃ if and only if F ( x) = Y for all x ∈ Dc

F .

Corollary 2.14. If F is a relation on X to Y and Y 6= ∅ , then F = F̃ if and
only if F is total.

Theorem 2.15. If A ⊂ X and B ⊂ Y , then

Γ̃(A, B) =
{

Γ(X, Y ) if B = ∅ ,

Γ(A, B) ∪ Γ(Ac, Y ) if B 6= ∅ .

Remark 2.16. Thus, in particular if A is a nonvoid subset of X, then

Γ̃A = ΓA ∪ Γ(Ac, X ) .

Moreover, we can at once see that the latter equality is also true for A = ∅ .

Theorem 2.17. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any U ⊂ X ,
with U 6= ∅ , we have

Γ̃(A, B) [U ] =
{

B if U ⊂ A ,

Y if U 6⊂ A .

Remark 2.18. Thus, in particular if A and U are nonvoid subsets of X, then

Γ̃A [U ] =
{

A if U ⊂ A ,

X if U 6⊂ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Corollary 2.19. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any x ∈ X
we have

Γ̃(A, B)(x) =
{

B if x ∈ A ,

Y if x /∈ A .

Remark 2.20. Thus, in particular if A is a nonvoid subset of X and x ∈ X,
then

Γ̃A(x) =
{

A if x ∈ A ,

X if x /∈ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Remark 2.21. Note that if A ⊂ X and ∅ is considered as a subset of Y , then
by Theorems 2.15 and 2.3 we have Γ̃(A, ∅)(x) = Γ(X, Y )(x) = Y for all x ∈ X.
Therefore, the assumption B 6= ∅ is indispensable in Corollary 2.19 and Theorem
2.17.
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3. Intersections and unions of box relations and their totalizations

Theorem 3.1. If A , C ⊂ X and B , D ⊂ Y , then

Γ(A, B) ∩ Γ(C, D) = Γ(A∩C, B ∩D) .

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

(x, y) ∈ Γ(A, B) ∩ Γ(C, D) ⇐⇒ (x, y) ∈ ( A×B ) ∩ ( C×D )

⇐⇒ (x, y) ∈ A×B , (x, y) ∈ C×D ⇐⇒ x ∈ A , y ∈ B , x ∈ C , y ∈ D

⇐⇒ x ∈ A ∩ C , y ∈ B ∩D ⇐⇒ (x, y) ∈ ( A ∩ C )× (B ∩D )

⇐⇒ (x, y) ∈ Γ(A∩C , B∩D) .

Therefore, the required equality is true.

Remark 3.2. Thus, in particular if A , B ⊂ X, then

ΓA ∩ ΓB = ΓA∩B .

Concerning unions, we can only prove a less convenient theorem.

Theorem 3.3. If A , C ⊂ X and B , D ⊂ Y , then

(1) Γ(A, B) ∪ Γ(A, D) = Γ(A, B ∪D) ;

(2) Γ(A, B) ∪ Γ(C, B) = Γ(A∪C, B) .

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

(x, y) ∈ Γ(A, B) ∪ Γ(A, D) ⇐⇒ (x, y) ∈ ( A×B ) ∪ ( A×D ) ⇐⇒
(x, y) ∈ A×B or (x, y) ∈ C×D ⇐⇒ ( x ∈ A , y ∈ B ) or ( x ∈ A , y ∈ D )

⇐⇒ x ∈ A , ( y ∈ B or y ∈ D ) ⇐⇒ x ∈ A , y ∈ B ∪D

⇐⇒ (x, y) ∈ A× ( B ∪D ) ⇐⇒ (x, y) ∈ Γ(A , B∪D) .

Therefore, equality (1) is true. The proof of (2) is quite similar.

Theorem 3.4. If A , C ⊂ X and B , D ⊂ Y such that D 6= ∅, then

Γ(A, B) ∩ Γ̃(C, D) = Γ(A∩C, B∩D) ∪ Γ(A\C, B) .

Proof. By Theorems 2.15 and 3.1, we have

Γ(A, B) ∩ Γ̃(C, D) = Γ(A, B) ∩
(
Γ(C, D) ∪ Γ(C c, Y )

)
=

(
Γ(A, B) ∩ Γ(C, D)

)
∪

(
Γ(A, B) ∩ Γ(C c, Y )

)
= Γ(A∩C , B∩D) ∪ Γ(A∩C c, B) .

Thus, since A ∩ C c = A \ C , the required equality is also true.



BOX AND TOTALIZATION RELATIONS 7

Remark 3.5. Thus, in particular if A , B ⊂ X such that B 6= ∅ , then

ΓA ∩ Γ̃B = ΓA∩B ∪ Γ(A\B, A) .

Moreover, we can easily see that the latter equality is also true for B = ∅ .

Theorem 3.6. If A , C ⊂ X and B , D ⊂ Y such that B 6= ∅ and D 6= ∅, then

Γ̃(A, B) ∩ Γ̃(C, D) = Γ(A∩C, B∩D) ∪ Γ(A\C, B) ∪ Γ(C\A, D) ∪ Γ((A∪C)c, Y ) .

Proof. By using Theorems 2.15 and 3.4, we can see that

Γ̃(A, B) ∩ Γ̃(C, D) =
(
Γ(A, B) ∪ Γ(Ac, Y )

)
∩ Γ̃(C, D)

=
(
Γ(A, B) ∩ Γ̃(C, D)

)
∪

(
Γ(Ac, Y ) ∩ Γ̃(C, D)

)
= Γ(A∩C, B∩D) ∪ Γ(A\C, B) ∪ Γ(Ac∩C, D) ∪ Γ(Ac\C, Y ) .

Hence, since Ac ∩ C = C \ A and Ac \ C = Ac ∩ C c = (A ∪ C )c, the required
equality is also true.

Remark 3.7. Thus, in particular if A and B are nonvoid subsets of X, then

Γ̃A ∩ Γ̃B = ΓA∩B ∪ Γ(A\B, A) ∪ Γ(B\A, B) ∪ Γ((A∪B)c, X) .

Moreover, we can easily see that this equality is also true even if either A = ∅ or
B = ∅ .

Remark 3.8. Note that if F is a relation on X to Y , and moreover C ⊂ X and
∅ is considered as a subset of Y , then by Theorem 2.15 we have

F ∩ Γ̃(C, ∅) = F ∩ Γ(X, Y ) = F ∩ (X×Y ) = F .

Therefore, the nonvoidness conditions are indispensable in Theorems 3.4 and 3.6.

Theorem 3.9. If A ⊂ X and B , D ⊂ Y , then

(1) Γ(A, B) ∪ Γ̃(A, D) = Γ̃(A, B∪D) if D 6= ∅ ;

(2) Γ̃(A, B) ∪ Γ̃(A, D) = Γ̃(A, B∪D) if B 6= ∅ and D 6= ∅ .

Proof. If D 6= ∅ , then by Theorems 2.15 and 3.3, we have

Γ(A, B) ∪ Γ̃(A, D) = Γ(A, B) ∪ Γ(A, D) ∪ Γ(Ac, Y ) = Γ(A, B∪D) ∪ Γ(Ac , Y ) = Γ̃(A, B∪D) .

While, if B 6= ∅ and D 6= ∅ , then by the above mentioned theorems we have

Γ̃(A, B) ∪ Γ̃(A, D) = Γ(A, B) ∪ Γ(Ac, Y ) ∪ Γ(A, D) ∪ Γ(Ac, Y )

= Γ(A, B) ∪ Γ(A, D) ∪ Γ(Ac, Y ) ∪ Γ(Ac, Y ) = Γ(A, B∪D) ∪ Γ(Ac , Y ) = Γ̃(A, B∪D) .
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Theorem 3.10. If A , C ⊂ X and B ⊂ Y such that B 6= ∅ , then

(1) Γ(A, B) ∪ Γ̃(C, B) = Γ(A∪C, B) ∪ Γ(C c, Y ) .

(2) Γ̃(A, B) ∪ Γ̃(C, B) = Γ(A∪C, B) ∪ Γ((A∩C)c, Y ) .

Proof. By Theorems 2.15 and 3.3, we have

Γ(A, B) ∪ Γ̃(C, B) = Γ(A, B) ∪ Γ(C, B) ∪ Γ(C c, Y ) = Γ(A∪C, B) ∪ Γ(C c, Y ) .

Moreover, by the above mentioned theorems, we also have

Γ̃(A, B) ∪ Γ̃(C, B) = Γ(A, B) ∪ Γ(Ac, Y ) ∪ Γ(C, B) ∪ Γ(C c, Y )

= Γ(A, B) ∪ Γ(C, B) ∪ Γ(Ac, Y ) ∪ Γ(C c, Y ) = Γ(A∪C, B) ∪ Γ(C c∪Ac, Y ) .

Hence, since C c ∪ Ac = (A ∩B c, equality (2) is also true.

Remark 3.11. Note that if F is a relation on X to Y , and moreover C ⊂ X
and ∅ is considered as a subset of Y , then by Theorem 2.15 we have

F ∪ Γ̃(C, ∅) = F ∪ Γ(X, Y ) = F ∪ (X×Y ) = X×Y = Γ(X, Y ) .

Therefore, the nonvoidness conditions are indispensable in Theorems 3.9 and 3.10.

4. Complements of box and totalization relations

Theorem 4.1. If A ⊂ X and B ⊂ Y , then

Γ c
(A, B) = Γ(Ac, Y ) ∪ Γ(X, Bc)

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

(x, y) ∈ Γ c
(A, B) ⇐⇒ (x, y) /∈ Γ(A, B) ⇐⇒ (x, y) /∈ A×B

⇐⇒ x /∈ A or y /∈ B ⇐⇒ (x, y) ∈ Ac × Y or (x, y) ∈ X ×B c

⇐⇒ (x, y) ∈ Γ(Ac, Y ) or (x, y) ∈ Γ(X, Bc) ⇐⇒ (x, y) ∈ Γ(Ac, Y )∪Γ(X, Bc) .

Therefore, the required equality is true.

Remark 4.2. Thus, in particular if A ⊂ X, then

Γc
A = Γ(Ac, X ) ∪ Γ(X, Ac) .

Corollary 4.3. If A ⊂ X and B ⊂ Y , then for any U ⊂ X, with U 6= ∅ , we
have

Γ c
(A, B) [U ] =

{
B c if U ⊂ A ,

Y if U 6⊂ A .

Proof. By Theorems 4.1, 1.10 and 2.5, we have

Γ c
(A, B) [U ] =

(
Γ(X, Bc) ∪ Γ(Ac, Y )

)
[U ]

= Γ(X, Bc) [U ] ∪ Γ(Ac, Y ) [U ] = B c ∪
{ ∅ if U ⊂ A ,

Y if U 6⊂ A .

Therefore, the required equality is also true
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Remark 4.4. Thus, in particular if A ⊂ X, then for any U ⊂ X, with U 6= ∅ ,
we have

Γc
A [U ] =

{
Ac if U ⊂ A ,

X if U 6⊂ A .

Corollary 4.5. If A ⊂ X and B ⊂ Y , then for any x ∈ X we have

Γ c
(A, B)(x) =

{
B c if x ∈ A ,

Y if x /∈ A .

Remark 4.6. Thus, in particular if A ⊂ X, then for any x ∈ X we have

Γc
A(x) =

{
Ac if x ∈ A ,

X if x /∈ A .

In addition to Theorem 4.1, it is also worth proving the following

Theorem 4.7. If A ⊂ X and B ⊂ Y , then

(1) Γc
(A, B) = Γ(A, Bc) ∪ Γ(Ac, Y ) ;

(2) Γc
(A, B) = Γ(A, Bc) ∪ Γ(Ac, B) ∪ Γ(Ac, Bc) .

Proof. By Theorems 4.1 and 3.3, we have

Γ c
(A, B) = Γ(X, Bc) ∪ Γ(Ac, Y ) = Γ(A, Bc) ∪ Γ(Ac, Bc) ∪ Γ(Ac, Y ) .

Hence, since Γ(Ac, Bc) ⊂ Γ(Ac, Y ), it is clear that (1) is true.
Moreover, by (1) and Theorem 3.3, we can see that

Γc
(A, B) = Γ(A, Bc) ∪ Γ(Ac, Y ) = Γ(A, Bc) ∪ Γ(Ac, B) ∪ Γ(Ac, Bc)

also holds.

Remark 4.8. Thus, in particular if A ⊂ X, then

Γ c
A = Γ(A, Ac) ∪ Γ(Ac, X) = ΓAc ∪ Γ(A, Ac) ∪ Γ(Ac, A) .

Now, as an immediate consequence of Theorems 4.7 and 2.15, we can also state

Theorem 4.9. If A ⊂ X and B ⊂ Y such that B 6= Y , then

Γ c
(A, B) = Γ̃(A, Bc) .

Remark 4.10. Thus, in particular if A is a proper subset of X, then

Γc
A = Γ̃(A, Ac) .
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Remark 4.11. Note that, by the corresponding definitions and Theorem 2.15, we
have

Γc
X =

(
X 2

)c = ∅ and Γ̃(X, X c) = Γ̃(X, ∅) = ΓX .

Therefore, the assumptions A 6= X and B 6= Y are indispensable in Remark 4.10
and Theorem 4.9, respectively.

By using Theorem 4.1, we can also easily prove the following

Theorem 4.12. If F is a relation on X to Y , then

F̃ c = F c ∩ Γ(DF , Y ) .

Proof. By Definition 2.7, DeMorgan’s law and Theorem 4.1, we have

F̃ c =
(
F ∪ Γ(Dc

F , Y )

)c = F c ∩ Γ c
(Dc

F , Y )

= F c ∩
(
Γ(DF , Y ) ∪ Γ(X, ∅)

)
= F c ∩ Γ(DF , Y ) .

In principle the following theorem can be naturally derived from Theorem 4.12.
However, it can now be more easily proved with the help of Theorem 2.12.

Theorem 4.13. If F is a relation on X to Y , then for any x ∈ X we have

F̃ c(x) =
{

F (x)c if x ∈ DF ,

∅ if x /∈ DF .

Proof. By Corollary 1.13 and Theorem 2.12, we have

F̃ c(x) = F̃ (x)c =
{

F (x)c if x ∈ DF ,

∅ if x /∈ DF .

Theorem 4.14. If F is a relation on X to Y , then for any U ⊂ X we have

F̃ c [U ] = F c [U ∩DF ] .

Proof. By Theorems 1.5, 4.13 and Corollary 1.13, we have

F̃ c [U ] = F̃ c [ ( U ∩DF ) ∪ ( U \DF ) ]

= F̃ c [U ∩DF ] ∪ F̃ c [U \DF ] =
( ⋃

x∈U∩DF

F̃ c(x)
)
∪

( ⋃
x∈U\DF

F̃ c(x)
)

=
⋃

x∈U∩DF

F (x)c =
⋃

x∈U∩DF

F c(x) = F c [U ∩DF ] .

In principle the following theorem can be naturally derived from Theorem 4.12.
However, it can now be more easily proved with the help of Theorem 4.9.
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Theorem 4.15. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then

Γ̃ c
(A, B) = Γ(A, Bc) .

Proof. From Theorem 4.9, we can can see that

Γ̃(A, B) = Γ c
(A, Bc) .

Hence, it is clear that the required equality is also true.

Remark 4.16. Thus, in particular if A is a nonvoid subset of X, then

Γ̃c
A = Γ(A, Ac) .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Corollary 4.17. Under the conditions of Theorem 4.15, for any U ⊂ X, we have

Γ̃ c
(A, B) [U ] =

{ ∅ if U ⊂ Ac ,

B c if U 6⊂ Ac .

Proof. By Theorems 4.15 and 2.5, we have

Γ̃ c
(A, B) [U ] = Γ(A, Bc) [U ] =

{ ∅ if U ⊂ Ac ,

B c if U 6⊂ Ac .

Remark 4.18. Thus, in particular if A is a nonvoid subset of X, then for any
U ⊂ X we have

Γ̃c
A [U ] =

{ ∅ if U ⊂ Ac ,

Ac if U 6⊂ Ac .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Corollary 4.19. Under the conditions of Theorem 4.15, for any x ∈ X, we have

Γ̃ c
(A, B)(x) =

{
B c if x ∈ A ,

∅ if x /∈ A .

Remark 4.20. Thus, in particular if A is a nonvoid subset of X, then for any
x ∈ X we have

Γ̃c
A(x) =

{
B c if x ∈ A ,

∅ if x /∈ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Remark 4.21. Note that if A ⊂ X and ∅ is considered as a subset of Y , then
by Theorem 2.15 we have

Γ̃c
(A, ∅) = Γc

(X, Y ) =
(
X×Y

)c = ∅ ,

and hence Γ̃ c
(A, ∅)(x) = ∅ for all x ∈ X. Therefore, the assumption B 6= ∅ is

indispensable in Corollaries 4.19 and 4.17 and Theorem 4.15.
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5. Differences of box relations and their totalizations

Theorem 5.1. If A , C ⊂ X and B , D ⊂ Y , then

(1) Γ(A, B) \ Γ(C, D) = Γ(A, B\D) ∪ Γ(A\C, B) ;

(2) Γ(A, B) \ Γ(C, D) = Γ(A∩C, B\D) ∪ Γ(A\C, B) .

Proof. By using Theorems 4.1 and 3.1, we can see that

Γ(A, B) \ Γ(C, D) = Γ(A, B) ∩ Γc
(C, D) =

Γ(A, B) ∩
(
Γ(X, Dc) ∪ Γ(C c, Y )

)
=

(
Γ(A, B) ∩ Γ(X, Dc)

)
∪

(
Γ(A, B) ∩ Γ(C c , Y )

)
= Γ(A, B∩Dc) ∪ Γ(A∩C c, B) = Γ(A, B\D) ∪ Γ(A\C, B) .

Moreover, by using Theorem 3.3, we can see that

Γ(A, B\D) = Γ((A∩C )∪(A\C ), B\D) = Γ(A∩C, B\D) ∪ Γ(A\C, B\D) .

Hence, by using that Γ(A\C, B\D) ⊂ Γ(A\C, B) , we can already see that

Γ(A, B) \ Γ(C, D) = Γ(A, B\D) ∪ Γ(A\C, B)

= Γ(A∩C, B\D) ∪ Γ(A\C, B\D) ∪ Γ(A\C, B) = Γ(A∩C, B\D) ∪ Γ(A\C, B)

is also true.

Remark 5.2. Thus, in particular if A , B ⊂ X, then

ΓA \ ΓB = Γ(A, A\B) ∪ Γ(A\B , A) = Γ(A∩B , A\B) ∪ Γ(A\B, A)

Theorem 5.3. If A , C ⊂ X and B , D ⊂ Y such that B 6= ∅, then

Γ̃(A, B) \ Γ(C, D) = Γ(A∩C , B\D) ∪ Γ(A\C , B) ∪ Γ(C\A , Dc) ∪ Γ((A∪C )c, Y ) .

Proof. By Theorems 2.15 and 5.1, we have

Γ̃(A, B) \ Γ(C, D) =
(
Γ(A, B) ∪ Γ(Ac, Y )

)
\ Γ(C, D)

=
(
Γ(A, B) \ Γ(C, D)

)
∪

(
Γ(Ac, Y ) \ Γ(C, D)

)
= Γ(A∩C, B\D) ∪ Γ(A\C, B) ∪ Γ(Ac∩C, Dc) ∪ Γ(Ac\C, Y ) .

Thus, since Ac ∩ C = C \ A and Ac \ C = Ac ∩ C c = (A ∪ C )c, the required
equality is also true.

Remark 5.4. Thus, in particular if A , B ⊂ X such that A 6= ∅ , then

Γ̃A \ ΓB = Γ(A∩B , A\B) ∪ Γ(A\B , A) ∪ Γ(B\A , Bc) ∪ Γ((A∪B)c, X) .

Moreover, by considering ∅ as a subset of X and using Remarks 2.16 and 4.8, we
can see that

Γ̃∅ \ ΓB = X 2 \ ΓB = Γc
B = Γ(B, Bc) ∪ Γ(Bc, X) .

Therefore, since Γ∅ = ∅ , the former equality is true even if A = ∅ .
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Remark 5.5. On the other hand, if A , C ⊂ X and D ⊂ Y , and ∅ is considered
as a subset Y , then by using Theorems 2.15 and 4.7, we can see that

Γ̃(A, ∅) \ Γ(C, D) = (X×Y ) \ Γ(C, D) = Γc
(C, D) = Γ(C, Dc) ∪ Γ(C c, Y ) .

Therefore, the assumption B 6= ∅ is indispensable in Theorem 5.3.

Theorem 5.6. If A , C ⊂ X and B , D ⊂ Y such that D 6= ∅, then

Γ(A, B) \ Γ̃(C, D) = Γ(A∩C, B\D) .

Proof. By Theorems 4.15 and 3.1, we have

Γ(A, B) \ Γ̃(C, D) = Γ(A, B) ∩ Γ̃c
(C, D) = Γ(A, B) ∩ Γ(C, Dc) = Γ(A∩C, B∩Dc) .

Thus, since B ∩Dc = B \D , the required equality is also true.

Remark 5.7. Thus, in particular if A , B ⊂ X such that B 6= ∅ , then

ΓA \ Γ̃B = Γ(A∩B, A\B) .

Moreover, by using Remark 2.16, we can easily see that the latter equality is true
even if B = ∅ .

Theorem 5.8. If A , C ⊂ X and B , D ⊂ Y such that B 6= ∅ and D 6= ∅, then

Γ̃(A, B) \ Γ̃(C, D) = Γ(A∩C , B\D) ∪ Γ(C\A , Dc) .

Proof. By Theorems 4.15 and 3.4, we have

Γ̃(A, B) \ Γ̃(C, D) = Γ̃(A, B) ∩ Γ̃c
(C, D) = Γ̃(A, B) ∩ Γ(C, Dc) =

= Γ(C, Dc) ∩ Γ̃(A, B) = Γ(C∩A , Dc∩B) ∪ Γ(C\A , Dc) .

Thus, since Dc ∩B = B \D , the required equality is also true.

Remark 5.9. Thus, in particular if A and B are nonvoid subsets of X, then

Γ̃A \ Γ̃B = Γ(A∩B , A\B) ∪ Γ(B\A , Bc) .

Moreover, by using Remarks 2.16 and 4.16, we can easily see that the latter equality
is true even if either A = ∅ or B = ∅ .

Remark 5.10. Note that if F is a relation on X to Y , and moreover C ⊂ X
and ∅ is considered as a subset of Y , then by Theorem 2.15, we have

F \ Γ̃(C, ∅) = F \ Γ(X, Y ) = F \ X×Y = ∅ .

Therefore, the nonvoidness conditions are indispensable in Theorems 5.6 and 5.8.
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6. A few basic facts on relators

A family R on relations on one set X to another Y is called a relator on X to
Y . Moreover, the ordered pair (X, Y )(R ) =

(
(X, Y ), R

)
is called a relator

space. For the origins of this notion, see [ 15 ] and the references therein.
If in particular R is a relator on X to itself, then we may simply say that R is

a relator on X . Moreover, by identifying singletons with their elements, we may
naturally write X (R) in place of ( X, X )(R ) .

Quite similarly, if R is a relation on X to Y , then we may simply write
(X, Y )(R ) in place of (X, Y )({R}) . More generally, the same convention can
also be applied when F is a function of relators on X to Y .

Relator spaces of the simpler type X (R) and X (R) are substantial genera-
lizations of ordered sets and uniform spaces [ 3 ] . However, they are insufficient
to include the theory of context spaces [ 4 ] , and to naturally express continuity
properties of relations [ 18 ] .

If R is a relator on X to Y , then for any A ⊂ X and B ⊂ Y , we write :

(1) A ∈ IntR( B ) if R [A ] ⊂ B for some R ∈ R ;

(2) A ∈ LbR( B ) if B ⊂ Rc [A ]c for some R ∈ R .

To see the appropriateness of the latter apparently very strange definition, recall
that, by the corresponding definition and Theorem 1.14, we have

R [A ] =
⋃

a∈A

R (a) and Rc [A ]c =
⋂

a∈A

R (a) .

Thus, in particular B ⊂ Rc [A ]c if and only if B ⊂ R (a) for all a ∈ A . That is,
b ∈ R(a) , i. e., aR b for all a ∈ A and b ∈ B . Therefore, A is a lower bound of
B with respect to R .

In this respect, it is also worth noticing that B ⊂ Rc [A ]c if and only if
Rc [A ] ⊂ B c . Therefore,

LbR( B ) = IntRc ( B c) and IntR( B) = LbRc (B c) ,

where Rc = {Rc : R ∈ R} . Thus, in contrast to a common belief, the basic
topological and order theoretic notions can be expressed in terms of each other.
This fact, and the use of the notation Lb , was first put forward in [ 19 ] .

Now, if R is a relator on X to Y , then for any a ∈ X and B ⊂ Y , we may
simply write :

(3) a ∈ intR( B ) if {a} ∈ IntR( B ) ; (4) a ∈ lbR( B ) if {a} ∈ LbR( B ) ;

(5) B ∈ ER if intR( B ) 6= ∅ ; (6) B ∈ LR if lbR(B ) 6= ∅ .

Moreover, if in particular R is a relator on X, then for any A ⊂ X we may also
write :

(7) A ∈ τR if A ∈ IntR(A ) ; (8) A ∈ TR if A ⊂ intR( A ) ;

(9) A ∈ lR if A ∈ LbR( A ) ; (10) A ∈ LR if A ⊂ lbR( A ) .
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The relations IntR and intR are called the proximal and topological interiors
on Y to X induced by R , respectively. While, the members of the families τR ,
TR , and ER are called the proximally open, topologically open and fat subsets of
X (R) , respectively.

The use of notation Int instead of b was first suggested in [ 15 ] . While, the
fact that the fat sets are usually more important tools than the open ones was first
stressed in [ 16 ] , and at the Seventh Topological Symposium in Prague in 1991.

Now, by Remark 2.2 and Definition 2.1, we may naturally introduce the following
generated relators.

Definition 6.1. For any family A ⊂ P (X) , we define

RA =
{

ΓA : A ∈ A
}

.

Moreover, for any relations f and F on P (Y ) to X and P (X ) , respectively, we
define

Rf =
{

Γ(a, B) : a ∈ f (B)
}

and RF =
{

Γ(A, B) : A ∈ F (B)
}

.

Remark 6.2. Note that if in particular FA is the identity function of A , then
RA = RFA .

While, if in particular Ff (B) =
{
{a} : a ∈ f (B)

}
for all B ⊂ Y , then

Rf = RFf
.

Moreover, by Definition 2.7, we may also also naturally introduce the following
totalization relator.

Definition 6.3. For any relator R on X to Y , we define

R̃ =
{

R̃ : R ∈ R} .

Remark 6.4. Thus, for any family A of subsets of X and relation F on X,
the totalizations R̃A and R̃F may be called the Davis–Pervin and the Hunsaker–
Lindgren relators on X generated by A and F.

However, in the sequel we shall only interested in some characteristic properties
of the induced order theoretic basic tools. For this, it will be enough to investigate
only the generated relators RF , Rf and RA considered in Definition 6.1.

7. Some applications to relator spaces

In addition to our former results on the complements of box relations, we shall
also need the following auxiliary theorem and its consequences.

Theorem 7.1. If A ⊂ X and B ⊂ Y , then for any U ⊂ X and V ⊂ Y , with
U 6= ∅ and V 6= Y , the following assertions are equivalent :

(1) Γc
(A, B) [U ] ⊂ V ; (2) U ⊂ A and V c ⊂ B .

Proof. By Corollary 4.3, we have

Γ c
(A, B) [U ] =

{
B c if U ⊂ A ,

Y if U 6⊂ A .

Hence, since V 6= Y , we can already see that (1) is equivalent to the requirements
that U ⊂ A and B c ⊂ V , i. e. , V c ⊂ B . Therefore, (1) and (2) are also equivalent.
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Remark 7.2. Thus, in particular if A ⊂ X, then for any U , V ⊂ X, with U 6= ∅
and V 6= X, we have Γc

A [U ] ⊂ V if and only if U ∪ V c ⊂ A .

Corollary 7.3. If A ⊂ X and B ⊂ Y , then for any u ∈ X and V ⊂ Y , with
V 6= Y , the following assertions are equivalent :

(1) Γc
(A, B)(u) ⊂ V ; (2) u ∈ A and V c ⊂ B .

Remark 7.4. Thus, in particular if A ⊂ X, then for any u ∈ X and V ⊂ X,
with V 6= X, we have Γc

A(u) ⊂ V if and only if u ∈ A and V c ⊂ A .

Corollary 7.5. If a ∈ X and B ⊂ Y , then for any u ∈ X and V ⊂ Y , with
V 6= Y , the following assertions are equivalent :

(1) Γc
(a, B)(u) ⊂ V ; (2) u = a and V c ⊂ B .

Now, by using the corresponding definitions and Theorem 7.1, we can also easily
prove the following

Theorem 7.6. If Lb is a relation on P (Y ) to P (X ) , then for any U ⊂ X and
V ⊂ Y , with U 6= ∅ and V 6= ∅ , the following assertions are equivalent :

(1) U ∈ LbRLb (V ) ;

(2) A ∈ Lb(B) for some A ⊂ X and B ⊂ Y with U ⊂ A and V ⊂ B .

Proof. By the corresponding definitions, we have (1) if and only if there exist
A ⊂ X and B ⊂ Y , with A ∈ Lb(B) , such that V ⊂ Γc

(A, B) [U ]c, i. e.,
Γc
(A, B) [U ] ⊂ V c. Moreover, by Theorem 7.1, the latter inclusion is equivalent

to the requirements that U ⊂ A and V ⊂ B. Therefore, (1) and (2) are also
equivalent.

In principle, the following theorem can be derived from Theorem 7.6 by using
Remark 6.2. However, it can be more easily proved with the help of Corollary 7.5.

Theorem 7.7. If lb is a relation on P (Y ) to X , then for any u ∈ X and
V ⊂ Y , with V 6= ∅, the following assertions are equivalent :

(1) u ∈ lbRlb (V ) ;

(2) u ∈ lb (B) for some B ⊂ Y with V ⊂ B .

Proof. By the corresponding definition, we have (1) if and only if {u} ∈ LbRlb (V ) .
This means that there exist a ∈ X and B ⊂ Y , with a ∈ lb (B) , such that
V ⊂ Γc

(a, B) [ {u} ]c, i. e., Γc
(a, B)(u) ⊂ V c. Moreover, by Corollary 7.5, the latter

inclusion is equivalent to the requirements that u = a and V ⊂ B . Therefore, (1)
and (2) are also equivalent.

Remark 7.8. Now, by establishing the basic properties of the relations LbR and
lbR for a relator R on X to Y , we can give some necessary and sufficient con-
ditions on the relations Lb and lb on P (Y ) to P (X ) and X, respectively, in
order that the equalities Lb = LbRLb and lb = lbRlb could be true.

Moreover, for a relator R on X to Y , we can investigate the validity the
equalities LbR = LbRLbR

and lbR = intRlbR
. And, for a relator R on X to
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Y , we may look for the largest relator S on X to Y such that the equality
LbR = LbS , resp. lbR = lbS could be true.

In addition to Theorems 7.6 and 7.7, we can also easily prove the following three
closely related theorems.

Theorem 7.9. If l ⊂ P (X ), then for any nonvoid subset U of X the following
assertions are equivalent :

(1) U ∈ lRl
; (2) U ⊂ A for some A ∈ l .

Proof. By the corresponding definition, we have (1) if and only if U ∈ LbRl
(U ) .

This means that there exists A ∈ l such that U ⊂ Γc
A [U ]c , i. e., Γc

A [U ] ⊂ U c.
Moreover, by Remark 7.2, the latter inclusion is equivalent to the requirement that
U ⊂ A . Therefore, (1) and (2) are also equivalent.

Theorem 7.10. If L ⊂ P (X ), then for any nonvoid subset U of X the following
assertions are equivalent :

(1) U ∈ LRL ; (2) U ⊂ A for some A ∈ L .

Proof. By the corresponding definition, we have (1) if and only if U ⊂ lbRL(U ) .
That is, for each u ∈ U , we have u ∈ lbRL(U ) , i. e., {u} ∈ LbRL(U ) . This
means that there exists Au ∈ L such that U ⊂ Γc

Au
({u}) c , i. e., Γc

A(u) ⊂ U c.
Moreover, by Remark 7.4, the latter inclusion is equivalent to the requirement that
u ∈ Au and U ⊂ Au . Hence, it is clear that (1) and (2) are also equivalent.

Theorem 7.11. If L ⊂ P (X ), then for any nonvoid subset U of X the following
assertions are equivalent :

(1) U ∈ LRL
; (2) U ⊂ A for some A ∈ L .

Proof. By the corresponding definitions, we have (1) if and only if lbRL
(U ) 6= ∅ .

That is, there exist x ∈ X such that x ∈ lbRL
(U ) . By the proof of Theorem 7.10,

the latter inclusion is equivalent to the requirement that there exists A ∈ L such
that x ∈ A and U ⊂ A . Hence, it is clear that (1) and (2) are also equivalent.

Remark 7.12. Now, by establishing the basic properties of the families lR , LR ,
and LR for a relator R on X, we can give some necessary and sufficient conditions
on a family A of subsets of X in order that the equality A = lRA , A = LRA ,
resp. A = LRA could be true.

Moreover, for a relator R on X, we can investigate the validity the equalities
lR = lRlR

, LR = LRLR and LR = LRLR
. And, for a relator R on X, we may

look for the largest relator S on X such that the equality lR = lS , LR = LS ,
resp. LR = LS could be true.

References
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20. Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep.,
Inst. Math. Inf., Univ. Debrecen 2 (2005), 1–38.
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