
Tech. Rep., Inst. Math., Univ. Debrecen 2010/11, 24 pp.

INCLUSIONS ON BOX AND TOTALIZATION RELATIONS

Árpád Száz

Abstract. In this paper, we shall only study inclusions on box and totalization

relations
Γ(A, B) = A×B and F̃ = F ∪ Γ(Dc

F
, Y ) ,

where A ⊂ X , B ⊂ Y and F is a relation on X to Y with domain DF . The set

and relation theoretic operations, and several algebraic and topological properties of

these relations, will be studied elsewhere.

This line of investigations is mainly motivated by the fact that the relations

Γ̃(A, B) = Γ̃(A, B) and Γ̃A = Γ̃(A, A)

play an important role in the uniformization of various topological structures such as

proximities, closures and topologies, for instance. Moreover, the relations F̃ can be

used to prove a useful reduction theorem for the intersection convolution of relations.
The latter operation allows of a natural treatment of the Hahn-Banach type extension

theorems.

1. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F is a relation on X to itself, then we may simply say that F is a relation on X.
Thus, a relation F on X to Y is also a relation on X ∪ Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y) ∈ F} and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called
the domain and range of F , respectively. If in particular X = DF , then we say
that F is a relation of X to Y , or that F is a total relation on X to Y . While, if
Y = RF , then we say that F is a relation on X onto Y .

If F is a relation on X to Y and U ⊂ DF , then the relation F |U = F ∩(U×Y )
is called the restriction of F to U . Moreover, if F and G are relations on X to Y
such that DF ⊂ DG and F = G |DF , then G is called an extension of F .
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In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f (x) = y instead of f (x) = {y} .

Concerning relations, we shall only quote here the following basic theorems.

Theorem 1.1. If F is a relation on X to Y , then

F =
⋃

x∈X

{x }×F (x) =
⋃

x∈DF

{x }×F (x) .

Remark 1.2. By this theorem, a relation F on X to Y can be naturally defined
by specifying F (x) for all x ∈ X, or by specifying DF and F (x) for all x ∈ DF .

Corollary 1.3. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F ⊂ G ;

(2) F (x) ⊂ G( x) for all x ∈ X ; (3) F (x) ⊂ G(x) for all x ∈ DF .

Corollary 1.4. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F = G ;

(2) F (x) = G(x) for all x ∈ X ;

(3) DF = DG and F (x) = G(x) for all x ∈ DF .

Theorem 1.5. If F is a relation on X to Y , then for any A , B ⊂ X we have

(1) F [A ∩B ] ⊂ F [A ] ∩ F [B ] ; (2) F [A ∪B ] = F [A ] ∪ F [B ] .

Hint. To check this, note first that F [A ] ⊂ F [B ] whenever A ⊂ B .

Theorem 1.6. If F is a relation on X to Y , then for any A , B ⊂ X we have

F [A ] \ F [B ] ⊂ F [A \B ] .

Corollary 1.7. If F is a relation on X onto Y , then for any A ⊂ X we have

F [A ]c ⊂ F [Ac ] .

Remark 1.8. If in particular the inverse F −1 = { (y, x) : (x, y) ∈ F
}

of F is
a function, then the equality also holds in Theorems 1.5 and 1.6 and Corollary 1.7.

Theorem 1.9. If F and G are relations on X to Y , then for any x ∈ X we
have

(1)
(
F ∩G

)
(x) = F (x) ∩G(x) ; (2)

(
F ∪G

)
(x) = F (x) ∪G(x) .
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Theorem 1.10. If F and G are relations on X to Y , then for any A ⊂ X we
have

(1)
(
F ∩G

)
[A ] ⊂ F [A ] ∩G [A ] ; (2)

(
F ∪G

)
[A ] = F [A ] ∪G [A ] .

Hint. To check this, note first that F [A ] ⊂ G [A ] whenever F ⊂ G .

Remark 1.11. Theorems 1.5, 1.9 and 1.10 can be naturally extended to arbitrary
families of sets and relations.

Theorem 1.12. If F and G are relations on X to Y , then for any x ∈ X and
A ⊂ X we have

(1) ( F \G )(x) = F (x) \G(x) ; (2) F [A ] \ G [A ] ⊂ ( F \G )[A ] .

Corollary 1.13. If F is a relation on X to Y , then for any x ∈ X and A ⊂ X,
with A 6= ∅ , we have

(1) F c(x) = F (x)c ; (2) F [A ] c ⊂ F c [A ] .

Theorem 1.14. If F is a relation on X to Y , then for any A ⊂ X we have

F c [A ] c =
⋂

x∈A

F (x) .

Proof. By DeMorgan’s law and Corollary 1.13, we have

F c [A ] c =
( ⋃

x∈A

F c(x)
)c

=
⋂

x∈A

F c(x)c =
⋂

x∈A

F (x) .

2. Box and totalization relations

Definition 2.1. For any A ⊂ X and B ⊂ Y , we define

Γ(A, B) = A×B .

Remark 2.2. In particular, we shall also write

ΓA = Γ(A, A) and Γ(a, B) = Γ({a} , B)

for any a ∈ X.

Theorem 2.3. If A ⊂ X and B ⊂ Y , then for any x ∈ X we have

Γ(A, B)( x) =
{

B if x ∈ A ,

∅ if x /∈ A .

Proof. By the corresponding definitions, for any y ∈ Y , we have

y ∈ Γ(A, B)( x) ⇐⇒ (x, y) ∈ Γ(A, B) ⇐⇒ (x, y) ∈ A×B ⇐⇒ x ∈ A , y ∈ B .

Therefore, the required equality is also true.
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Remark 2.4. Thus, in particular if A ⊂ X, then for any x ∈ X we have

ΓA( x) =
{

A if x ∈ A ,

∅ if x /∈ A .

Theorem 2.5. If A ⊂ X and B ⊂ Y , then for any U ⊂ X we have

Γ(A, B) [U ] =
{ ∅ if U ⊂ Ac ,

B if U 6⊂ Ac .

Proof. By Theorems 1.5 and 2.3, we have

Γ(A, B) [U ] = Γ(A, B) [ ( U ∩ A ) ∪ (U \A ) ] = Γ(A, B) [U ∩ A ] ∪ Γ(A, B) [U \A ]

=
( ⋃

x∈U∩A

Γ(A, B)( x)
)
∪

( ⋃
x∈U\A

Γ(A, B)( x)
)

=
⋃

x∈U∩A

B =
{ ∅ if U ∩A = ∅ ,

B if U ∩A 6= ∅ .

Hence, since U ∩A = ∅ ⇐⇒ U ⊂ Ac , it is clear that the required equality is also
true.

Remark 2.6. Thus, in particular if A ⊂ X, then for any U ⊂ X we have

ΓA [U ] =
{ ∅ if U ⊂ Ac ,

A if U 6⊂ Ac .

Definition 2.7. For any relation F on one set X to another Y , we define

F̃ = F ∪ Γ(D c
F , Y ) .

Remark 2.8. If Y 6= ∅ , then the relation F̃ may be called the natural totalization
of F . Its usefulness will be cleared up by the forthcoming results.

In particular, for any A , B ⊂ X, the totalizations

Γ̃A = Γ̃A and Γ̃(A, B) = Γ̃(A, B)

may be called the Davis–Pervin and the Hunsaker–Lindgren relations on X, respec-
tively.

The latter relations play an important role in the generalized uniformization of
various topological structures such as proximities, closures, topologies, and filters,
for instance. ( See [ 2 ] , [ 14 ] , [ 21 ] and [ 1, pp. 42 , 193 ] , [ 6 ] , [ 16 ] .)

While, the relations F̃ can be used to prove a useful reduction theorem for the
intersection convolution of relations [ 22 ] . The latter operation allows of a natural
treatment of the Hahn-Banach type extension theorems. ( See [ 17 ] and [ 5 ] .)
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Theorem 2.9. If F is a relation on X to Y , then for any U ⊂ X we have

F̃ [U ] =
{

F [U ] if U ⊂ DF ,

Y if U 6⊂ DF .

Proof. By Definition 2.7 and Theorems 1.10 and 2.5, we have

F̃ [U ] =
(
F ∪ Γ(D c

F , Y )

)
[U ] = F [U ] ∪ Γ(D c

F , Y ) [U ]

= F [U ] ∪
{ ∅ if U ⊂ DF ,

Y if U 6⊂ DF .

Hence, it is clear that the required equality is also true.

Corollary 2.10. If F is a relation on X to Y , then for some U ⊂ X we have
F [U ] = F̃ [U ] if and only if either U ⊂ DF or F [U ] = Y .

Corollary 2.11. If F is a relation on X to Y , then for some x ∈ X we have
F (x) = F̃ (x) if and only if either x ∈ DF or F (x) = Y .

From Theorem 2.9, it is clear that in particular we also have

Theorem 2.12. If F is a relation on X to Y , then for any x ∈ X we have

F̃ ( x) =
{

F ( x) if x ∈ DF ,

Y if x /∈ DF .

Corollary 2.13. If F is a relation on X to Y , then F̃ is an extension of F such
that F = F̃ if and only if F ( x) = Y for all x ∈ Dc

F .

Corollary 2.14. If F is a relation on X to Y and Y 6= ∅ , then F = F̃ if and
only if F is total.

Theorem 2.15. If A ⊂ X and B ⊂ Y , then

Γ̃(A, B) =
{

Γ(X, Y ) if B = ∅ ,

Γ(A, B) ∪ Γ(Ac, Y ) if B 6= ∅ .

Proof. If B 6= ∅ , then by Theorem 2.3 it is clear that A = DΓ(A, B) . Hence, by
Definition 2.7, we can see that Γ̃(A, B) = Γ(A, B) ∪ Γ(Ac, Y ) .

While, if B = ∅ , then we can note that Γ(A, B) = Γ(A, ∅) = A× ∅ = ∅ . Hence,
since ∅ = D∅ , we can already see that Γ̃(A, B) = ∅̃ = ∅ ∪ Γ(∅c, Y ) = Γ(X, Y ) .

Remark 2.16. Thus, in particular if A is a nonvoid subset of X, then

Γ̃A = ΓA ∪ Γ(Ac, X ) .

Moreover, we can easily see that the latter equality is also true for A = ∅ .
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Theorem 2.17. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any U ⊂ X ,
with U 6= ∅ , we have

Γ̃(A, B) [U ] =
{

B if U ⊂ A ,

Y if U 6⊂ A .

Proof. Because of B 6= ∅ and Theorem 2.3, we have A = DΓ(A, B) . Now, by
Theorem 2.9, we can see that

Γ̃(A, B) [U ] =
{

Γ(A, B) [U ] if U ⊂ A ,

Y if U 6⊂ A .

Moreover, if U ⊂ A , then because of U 6= ∅ we can note that U 6⊂ Ac . Therefore,
by Theorem 2.5, we have Γ(A, B) [U ] = B . Hence, it is clear that the required
equality also is true.

Remark 2.18. Thus, in particular if A and U are nonvoid subsets of X, then

Γ̃A [U ] =
{

A if U ⊂ A ,

X if U 6⊂ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

By Theorem 2.17, it is clear that in particular we also have

Corollary 2.19. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any x ∈ X
we have

Γ̃(A, B)(x) =
{

B if x ∈ A ,

Y if x /∈ A .

Remark 2.20. Thus, in particular if A is a nonvoid subset of X and x ∈ X,
then

Γ̃A(x) =
{

A if x ∈ A ,

X if x /∈ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Remark 2.21. Note that if A ⊂ X and ∅ is considered as a subset of Y , then
by Theorems 2.15 and 2.3 we have Γ̃(A, ∅)(x) = Γ(X, Y )(x) = Y for all x ∈ X.
Therefore, the assumption B 6= ∅ is indispensable in Corollary 2.19 and Theorem
2.17.

3. Inclusions on box relations

Theorem 3.1. If A ⊂ X and B ⊂ Y , then for any U ⊂ X and V ⊂ Y the
following assertions are equivalent :

(1) Γ(A, B) [U ] ⊂ V ; (2) U ⊂ Ac or B ⊂ V .

Proof. If U 6⊂ Ac, then by Theorem 2.5 we have Γ(A, B) [U ] = B . Hence, it is
clear that (1) implies (2) . By Theorem 2.5, the converse implication is even more
obvious.
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Remark 3.2. Thus, in particular if A ⊂ X, then for any U , V ⊂ X we have
ΓA [U ] ⊂ V if and only if either U ⊂ Ac or A ⊂ V .

Corollary 3.3. If A ⊂ X and B ⊂ Y , then for any x ∈ X and V ⊂ Y the
following assertions are equivalent :

(1) Γ(A, B)(x) ⊂ V ; (2) x /∈ A or B ⊂ V .

Remark 3.4. Thus, in particular if A ⊂ X, then for any x ∈ X and V ⊂ X we
have ΓA(x) ⊂ V if and only if either x /∈ A or A ⊂ V .

Theorem 3.5. If A ⊂ X and B ⊂ Y , then for any relation F on X to Y the
following assertions are equivalent :

(1) Γ(A, B) ⊂ F ; (2) B ⊂ F c [A ]c;

(3) for any x ∈ A we have B ⊂ F (x) ;

(4) for any x ∈ X we have either x /∈ A or B ⊂ F (x) .

Proof. By Corollaries 1.3 and 3.3 and Theorem 1.14, we can see that

Γ(A, B) ⊂ F ⇐⇒ ∀ x ∈ X : Γ(A, B)(x) ⊂ F (x)

⇐⇒ ∀ x ∈ X : x /∈ A or B ⊂ F (x) ⇐⇒ ∀ x ∈ A : B ⊂ F (x)

⇐⇒ B ⊂
⋂

x∈A

F (x) ⇐⇒ B ⊂ F c [A ]c .

Remark 3.6. Thus, in particular if A ⊂ X, then for any relation F on X we
have ΓA ⊂ F if and only A ⊂ F c [A ] c , or equivalently A ⊂ F (x) for all x ∈ A .

Analogously to Theorem 3.1, we can also easily establish the following

Theorem 3.7. If A ⊂ X and B ⊂ Y , then for any U ⊂ X and V ⊂ Y , with
V 6= ∅ , the following assertions are equivalent :

(1) V ⊂ Γ(A, B) [U ] ; (2) U 6⊂ Ac and V ⊂ B .

Proof. If (1) holds, then because of V 6= ∅ and Theorem 2.5 we necessarily have
U 6⊂ Ac and V ⊂ Γ(A, B) [U ] = B . Therefore, (2) also holds. By Theorem 2.5,
the converse implications is even more obvious.

Remark 3.8. Thus, in particular if A ⊂ X, then for any U ⊂ X and V ⊂ Y ,
with V 6= ∅ , we have V ⊂ ΓA [U ] if and only if U 6⊂ Ac and V ⊂ A .

Corollary 3.9. If A ⊂ X and B ⊂ Y , then for any x ∈ X and V ⊂ Y , with
V 6= ∅ , the following assertions are equivalent :

(1) V ⊂ Γ(A, B)(x) ; (2) x ∈ A and V ⊂ B .

Remark 3.10. Thus, in particular if A ⊂ X, then for any x ∈ X and V ⊂ Y ,
with V 6= ∅ , we have V ⊂ ΓA(x) if and only if x ∈ A and V ⊂ A .
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Theorem 3.11. If A ⊂ X and B ⊂ Y , then for any relation F on X to Y the
following assertions are equivalent :

(1) F ⊂ Γ(A, B) ; (2) DF ⊂ A and RF ⊂ B ;

(3) for any x ∈ DF we have x ∈ A and F (x) ⊂ B .

Proof. By Corollaries 1.3 and 3.9, we can see that

F ⊂ Γ(A, B) ⇐⇒ ∀ x ∈ DF : F (x) ⊂ Γ(A, B)(x)

⇐⇒ ∀ x ∈ DF : x ∈ A and F (x) ⊂ B ⇐⇒ DF ⊂ A and RF ⊂ B .

Remark 3.12. Thus, in particular if A ⊂ X, then for any relation F on X we
have F ⊂ ΓA if and only if DF ∪ RF ⊂ A , or equivalently for any x ∈ DF we
have x ∈ A and F (x) ⊂ A .

Now, as an immediate consequence of Theorems 3.1 and 3.7, we can also state

Theorem 3.13. If A ⊂ X and B ⊂ Y , then for any U ⊂ X and V ⊂ Y , with
V 6= ∅ , the following assertions are equivalent :

(1) V = Γ(A, B) [U ] ; (2) U 6⊂ Ac and B = V .

Proof. If (1) holds, then by Theorem 3.7 we have U 6⊂ Ac and V ⊂ B . Hence,
by Theorem 3.1, it is clear that B ⊂ V also holds. Thus, (1) implies (2) . By the
above mentioned theorems, the converse implication is even more obvious.

Remark 3.14. Thus, in particular if A ⊂ X, then for any U ⊂ X and V ⊂ Y ,
with V 6= ∅ , we have V = ΓA [U ] if and only if U 6⊂ Ac and A = V .

Corollary 3.15. If A ⊂ X and B ⊂ Y , then for any x ∈ X and V ⊂ Y , with
V 6= ∅ , the following assertions are equivalent :

(1) V = Γ(A, B)(x) ; (2) x ∈ A and B = V .

Remark 3.16. Thus, in particular if A ⊂ X, then for any x ⊂ X and V ⊂ Y ,
with V 6= ∅ , we have V = ΓA(x) if and only if x ∈ A and A = V .

In principle, the following theorem can also be proved with the help of Corollaries
1.4 and 3.15. However, it can now be, more easily, proved with the help of Theorems
3.5 and 3.11.

Theorem 3.17. If A ⊂ X and B ⊂ Y , then for any relation F on X to Y the
following assertions are equivalent :

(1) F = Γ(A, B) ; (2) DF ⊂ A and RF ⊂ B ⊂ F c [A ]c;

(3) for any x ∈ DF we have x ∈ A , and for any x ∈ A we have F (x) = B .

Proof. By Theorems 3.11 and 3.5, it is clear that (1) and (2) are equivalent.
On the other hand, if (1) holds, then by Theorem 3.11, for any x ∈ DF , we
have x ∈ A , and for any x ∈ X we have F (x) ⊂ B . Moreover, by Theorem 3.5,
for any x ∈ A we also have B ⊂ F (x) . Therefore, (3) also holds. By the above
mentioned theorems, the converse implication is even more obvious.
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Remark 3.18. Thus, in particular if A ⊂ X, then for any relation F on X we
have F = ΓA if and only if DF ∪ RF ⊂ A ⊂ F c [A ]c, or equivalently for any
x ∈ DF we have x ∈ A , and for any x ∈ A we have F (x) = A .

By using Theorems 3.1 and 3.7, we can also easily prove the following

Theorem 3.19. If A , C ⊂ X and B , D ⊂ Y such that B 6= ∅ , then for any
U , V ⊂ X the following assertions are equivalent :

(1) Γ(A, B) [U ] ⊂ Γ(C, D) [V ] ; (2) U ⊂ Ac or ( V 6⊂ C c and B ⊂ D ) .

Proof. By Theorem 3.1, we have (1) if and only if U ⊂ Ac or B ⊂ Γ(C, D) [V ] .
Moreover, by Theorem 3.7, the latter inclusion holds if and only if V 6⊂ C c and
B ⊂ D . Therefore, the equivalence of (1) and (2) is also true.

Remark 3.20. Thus, in particular if A , B ⊂ X such that A 6= ∅ , then for any
U , V ⊂ X we have ΓA [U ] ⊂ ΓB [V ] if and only if either U ⊂ Ac or ( V 6⊂ B c

and A ⊂ B ) .

Corollary 3.21. If A , C ⊂ X and B , D ⊂ Y such that B 6= ∅ , then for any
x , y ∈ X the following assertions are equivalent :

(1) Γ(A, B)(x) ⊂ Γ(C, D)(y) ; (2) x /∈ A or
(
y ∈ C and B ⊂ D

)
.

Remark 3.22. Thus, in particular if A , B ⊂ X such that A 6= ∅ , then for any
x , y ∈ X we have ΓA(x) ⊂ ΓB (y) if and only if either x /∈ A or ( y ∈ B and
A ⊂ B ) .

Theorem 3.23. If A , C ⊂ X and B , D ⊂ Y such that A 6= ∅ and B 6= ∅ ,
then the following assertions are equivalent :

(1) Γ(A, B) ⊂ Γ(C, D) ; (2) A ⊂ C and B ⊂ D .

Proof. By Theorem 3.11, we have (1) if and only if DΓ(A, B)⊂ C and RΓ(A, B)⊂ D .
Moreover, by Theorem 2.3, we now also have A = DΓ(A, B) and B = RΓ(A, B) .
Therefore, (1) and (2) are also equivalent.

Remark 3.24. Thus, in particular for any A , B ⊂ X , with A 6= ∅ , we have
ΓA ⊂ ΓB if and only if A ⊂ B .

Theorem 3.25. If A , C ⊂ X and B and D are nonvoid subsets of Y , then for
any U , V ⊂ X the following assertions are equivalent :

(1) Γ(A, B) [U ] = Γ(C, D) [V ] ;

(2) ( U ⊂ Ac and V ⊂ C c) or ( U 6⊂ Ac , V 6⊂ C c and B = D ) .

Proof. By Theorem 3.19, we have

Γ(A, B) [U ] ⊂ Γ(C, D) [V ] ⇐⇒ U ⊂ Ac or (V 6⊂ C c and B ⊂ D )

and

Γ(C, D) [V ] ⊂ Γ(A, B) [U ] ⇐⇒ V ⊂ C c or (U 6⊂ Ac and D ⊂ B ) .

Hence, it is clear that the equivalence (1) and (2) is also true.
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Remark 3.26. Thus, in particular if A and B are nonvoid subsets of X, then
for any U , V ⊂ X we have ΓA [U ] = ΓB [V ] if and only if either (U ⊂ Ac and
V ⊂ B c) or (U 6⊂ Ac , V 6⊂ B c and A = B ) .

Corollary 3.27. If A , C ⊂ X and B and D are nonvoid subsets of Y , then for
any x , y ∈ X the following assertions are equivalent :

(1) Γ(A, B)(x) = Γ(C, D)(y) ;

(2) ( x /∈ A and y /∈ C ) or ( x ∈ A , y ∈ C and B = D ) .

Remark 3.28. Thus, in particular if A and B are nonvoid subsets of X, then for
any x , y ∈ X we have ΓA(x) = ΓB (y) if and only if either (x /∈ A and y /∈ B )
or ( x ∈ A , y ∈ B and A = B ) .

Finally, as an immediate consequence of Theorem 3.23, we can also state

Theorem 3.29. If A and C are nonvoid subsets of X and B and D are novoid
subsets of Y , then the following assertions are equivalent :

(1) Γ(A, B) = Γ(C, D) ; (2) A = C and B = D .

Remark 3.30. Thus, in particular for any nonvoid subsets A and B of X we
have ΓA = ΓB if and only if A = B .

4. Inclusions on totalization relations

Theorem 4.1. If F is a relation on X to Y , then for any U ⊂ X and V ⊂ Y ,
with V 6= Y , the following assertions are equivalent :

(1) F̃ [U ] ⊂ V ; (2) U ⊂ DF and F [U ] ⊂ V .

Proof. If (1) holds, then by Theorem 2.9 and the assumption V 6= Y , it is clear
that U ⊂ DF and F [U ] = F̃ [U ] ⊂ V . Therefore, (2) also holds. By Theorem
2.9, the converse implication is even more obvious.

Corollary 4.2. If F is a relation on X to Y , then for any x ∈ X and V ⊂ Y ,
with V 6= Y , the following assertions are equivalent :

(1) F̃ (x) ⊂ V ; (2) x ∈ DF and F (x) ⊂ V .

Theorem 4.3. For any relations F and G on X to Y , the following assertions
are equivalent :

(1) F̃ ⊂ G ;

(2) for any x ∈ X, with G(x) 6= Y , we have x ∈ DF and F (x) ⊂ G(x) ;

(3) for any x ∈ X we have either G(x) = Y or
(
x ∈ DF and F (x) ⊂ G(x)

)
;

(4) for any x ∈ DF we have F (x) ⊂ G(x) , and for any x ∈ Dc
F we have

G(x) = Y .
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Proof. Define A =
{

x ∈ X : G(x) 6= Y
}

. Then, by Corollaries 1.3 and 4.2, we
can see that

F̃ ⊂ G ⇐⇒ ∀ x ∈ X : F̃ (x) ⊂ G(x)

⇐⇒ ∀ x ∈ A : F̃ (x) ⊂ G(x) ⇐⇒ ∀ x ∈ A : x ∈ DF and F (x) ⊂ G(x) .

Therefore, (1) and (2) are equivalent. Moreover, we can easily check that (2) is
equivalent to (3), and (3) is equivalent to (4).

Analogously to Theorem 4.1, we can also easily establish the following

Theorem 4.4. If F is a relation on X to Y , then for any U ⊂ X and V ⊂ Y
the following assertions are equivalent :

(1) V ⊂ F̃ [U ] ; (2) U 6⊂ DF or V ⊂ F [U ] .

Proof. If U ⊂ DF , then by Theorem 2.9 we have F̃ [U ] = F [U ] . Hence, it is
clear that (1) implies (2). By Theorem 2.9, the converse implication is also quite
obvious.

Corollary 4.5. If F is a relation on X to Y , then for any x ∈ X and V ⊂ Y
the following assertions are equivalent :

(1) V ⊂ F̃ (x) ; (2) x /∈ DF or V ⊂ F (x) .

Theorem 4.6. For any relations F and G on X to Y , the following assertions
are equivalent :

(1) G ⊂ F̃ ;

(2) for any x ∈ DF we have G(x) ⊂ F (x) ;

(3) for any x ∈ DF ∩DG we have G(x) ⊂ F (x) ;

(4) for any x ∈ X we have either x /∈ DF or G(x) ⊂ F (x) ;

(5) for any x ∈ DG we have either x /∈ DF or G(x) ⊂ F (x) .

Proof. By Corollaries 1.3 and 4.5, it is clear that

G ⊂ F̃ ⇐⇒ ∀ x ∈ DG : G(x) ⊂ F̃ (x)

⇐⇒ ∀ x ∈ DG : x /∈ DF or G(x) ⊂ F (x) .

Therefore, (1) and (5) are equivalent. Moreover, we can easily see that (2) is
equivalent to both (3) and (4), and (4) is equivalent to (5).

Now, as an immediate consequence of Theorems 4.1 and 4.4, we can also state

Theorem 4.7. If F is a relation on X to Y , then for any U ⊂ X and V ⊂ Y ,
with V 6= Y , the following assertions are equivalent :

(1) V = F̃ [U ] ; (2) U ⊂ DF and V = F [U ] .

Proof. Namely, by Theorem 4.1 and 4.4, we have

F̃ [U ] ⊂ V ⇐⇒ U ⊂ DF and F [U ] ⊂ V
and

V ⊂ F̃ [U ] ⇐⇒ U 6⊂ DF or V ⊂ F [U ] .

Hence, it is clear that (1) and (2) are also equivalent.
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Corollary 4.8. If F is a relation on X to Y , then for any x ∈ X and V ⊂ Y ,
with V 6= Y , the following assertions are equivalent :

(1) V = F̃ (x) ; (2) x ∈ DF and V = F (x) .

Now, as an immediate consequence of Theorems 4.3 and 4.6, we can also state

Theorem 4.9. For any relations F and G on X to Y , the following assertions
are equivalent :

(1) F̃ = G ;
(2) for any x ∈ DF we have F (x) = G(x) , and for any x ∈ Dc

F , we have
G(x) = Y ;

(3) for any x ∈ X we have ( x /∈ DF and G(x) = Y
)

or ( F (x) = Y and
G(x) = Y

)
or ( x ∈ DF and F (x) = G(x)

)
.

However, it is now more interesting to note that, by using Theorems 4.1 and 4.4,
we can also easily prove the following

Theorem 4.10. If F and G are relations on X to Y , then for any U ⊂ X and
V ⊂ Y , with G [V ] 6= Y , the following assertions are equivalent :

(1) F̃ [U ] ⊂ G̃ [V ] ; (2) V 6⊂ DG or
(
U ⊂ DF and F [U ] ⊂ G [V ]

)
.

Proof. By Theorem 4.4, we have

F̃ [U ] ⊂ G̃ [V ] ⇐⇒ V 6⊂ DG or F̃ [U ] ⊂ G [V ] .

Moreover, by Theorem 4.4, we have

F̃ [U ] ⊂ G [V ] ⇐⇒ U ⊂ DF and F [U ] ⊂ G [V ] .

Therefore, the equivalence of (1) and (2) is also true.

Corollary 4.11. If F and G are relations on X to Y , then for any x , y ∈ X,
with G(y) 6= Y , the following assertions are equivalent :

(1) F̃ (x) ⊂ G̃(y) ; (2) y /∈ DG or ( x ∈ DF and F (x) ⊂ G(y)) .

Now, analogously to Theorem 4.3, we can also easily establish the following

Theorem 4.12. For any relations F and G on X to Y , the following assertions
are equivalent :

(1) F̃ ⊂ G̃ ;

(2) for any x ∈ X, with G(x) 6= Y , we have either x /∈ DG or
(
x ∈ DF and

F (x) ⊂ G(x)
)
;

(3) for any x ∈ X we have G(x) = Y or x /∈ DG or
(
x ∈ DF and F (x) ⊂

G(x)
)
;

(4) for any x ∈ DF ∩DG we have F (x) ⊂ G(x) , and for any x ∈ DG \DF

we have G(x) = Y .

Moreover, as an immediate consequence of Theorem 4.10, we can also state
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Theorem 4.13. If F and G are relations on X to Y , then for any U ⊂ X and
V ⊂ Y , with F [U ] 6= Y and G [V ] 6= Y , the following assertions are equivalent :

(1) F̃ [U ] = G̃ [V ] ;

(2)
(
U 6⊂ DF and V 6⊂ DG

)
or

(
U ⊂ DF , V ⊂ DG and F [U ] = G [V ]

)
.

Proof. By Theorem 4.10, we have

F̃ [U ] ⊂ G̃ [V ] ⇐⇒ V 6⊂ DG or
(
U ⊂ DF and F [U ] ⊂ G [V ]

)
.

and

G̃ [V ] ⊂ F̃ [U ] ⇐⇒ U 6⊂ DF or
(
V ⊂ DG and G [V ] ⊂ F [U ]

)
.

Hence, it is clear that the equivalence of (1) and (2) is also true.

Corollary 4.14. If F and G are relations on X to Y , then for any x , y ∈ X,
with F (x) 6= Y and G(y) 6= Y , the following assertions are equivalent :

(1) F̃ (x) = G̃(y) ;

(2)
(
x /∈ DF and y /∈ DG

)
or

(
x ∈ DF , y ∈ DG and F (x) = G(y)

)
.

Theorem 4.15. For any relations F and G on X to Y , the following assertions
are equivalent :

(1) F̃ = G̃ ;

(2) for any x ∈ DF ∩DG we have F (x) = G(x) , for any x ∈ DF \DG we
have F (x) = Y , and for any x ∈ DG \DF we have G(x) = Y ;

(3) for any x ∈ X we have x /∈ DF ∪ DG or (x /∈ DF and G(x) = Y ) or
( x /∈ DG and F (x) = Y ) or ( x ∈ DF ∩DG and F (x) = G(x)) .

Proof. By Theorem 4.12, it is clear that (1) and (2) are equivalent. Moreover, we
can easily see that (2) and (3) are also equivalent.

5. Inclusions on totalizations of box relations

In principle, the following theorem can be naturally derived from Theorems 4.1
and 3.1. However, it can be more easily proved with the help of Theorem 2.17.

Theorem 5.1. If A ⊂ X and B ⊂ Y , then for any U ⊂ X and V ⊂ Y , with
U 6= ∅ and V 6= Y , the following assertions are equivalent :

(1) Γ̃(A, B) [U ] ⊂ V ; (2) U ⊂ A and ∅ 6= B ⊂ V .

Proof. By Theorems 2.15 and 2.3 and the condition U 6= ∅, it is clear that
Γ̃(A, ∅) [U ] = Γ(X, Y ) [U ] = Y . Therefore, if (1) holds, then because of V 6= Y
we necessarily have B 6= ∅ . Hence, by Theorem 2.17 and the assumption V 6= Y ,
we can see that U ⊂ A and B = Γ̃(A, B) [U ] ⊂ V . Therefore, (2) also holds. By
Theorem 2.17, the converse implication is even more obvious.
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Remark 5.2. Thus, in particular if A ⊂ X, then for any U , V ⊂ X, with U 6= ∅
and V 6= X, we have Γ̃A [U ] ⊂ V if and only if U ⊂ A ⊂ V .

Corollary 5.3. If A ⊂ X and B ⊂ Y , then for any x ∈ X and V ⊂ Y , with
V 6= Y , the following assertions are equivalent :

(1) Γ̃(A, B)(x) ⊂ V ; (2) x ∈ A and ∅ 6= B ⊂ V .

Remark 5.4. Thus, in particular if A ⊂ X, then for any x ∈ X and V ⊂ X,
with V 6= X, we have Γ̃A(x) ⊂ V if and only if x ∈ A ⊂ V .

Theorem 5.5. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any relation F
on X on Y the following assertions are equivalent :

(1) Γ̃(A, B) ⊂ F ; (2) B ⊂ F c [A ]c and Y = F c [Ac ]c ;

(3) for any x ∈ X, with F (x) 6= Y , we have x ∈ A and B ⊂ F (x) ;

(4) for any x ∈ X we have either F (x) = Y or
(
x ∈ A and B ⊂ F (x)

)
;

(5) for any x ∈ A we have B ⊂ F (x) , and for any x ∈ Ac, we have
F (x) = Y .

Proof. By Corollaries 1.3 and 5.3, and the proof of Theorem 4.3, it is clear that (1)
and (3) are equivalent. Moreover, we can easily see that (3) is equivalent to (4),
and (4) is equivalent to (5). Finally, by Theorem 1.14, it is clear that (2) is only a
concise reformulation of (5).

Remark 5.6. Thus, in particular if A is a nonvoid subset of X, then for any
relation F on X we have Γ̃A ⊂ F if and only if A ⊂ F c [A ]c and X = F c [Ac ]c,
or equivalently for any x ∈ X, with F (x) 6= X, we have x ∈ A and A ⊂ F (x) .

Analogously to Theorem 5.1, we can also easily prove the following

Theorem 5.7. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any U ⊂ X
and V ⊂ Y , with U 6= ∅ , the following assertions are equivalent :

(1) V ⊂ Γ̃(A, B) [U ] ; (2) U 6⊂ A or V ⊂ B .

Proof. If U ⊂ A , then by Theorem 2.17 we have Γ̃(A, B) [U ] = B . Hence, it is
clear that (1) implies (2). By Theorem 2.17, the converse implication is also quite
obvious.

Remark 5.8. Thus, in particular if A is a nonvoid subset of X, then for any
U , V ⊂ X, with U 6= ∅ , we have V ⊂ Γ̃A [U ] if and only if either U 6⊂ A or
V ⊂ A .

Corollary 5.9. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any x ∈ X
and V ⊂ Y the following assertions are equivalent :

(1) V ⊂ Γ̃(A, B)(x) ; (2) x /∈ A or V ⊂ B .

Remark 5.10. Thus, in particular if A is a nonvoid subset of X, then for any
x ∈ X and V ⊂ X we have V ⊂ Γ̃A(x) if and only if either x /∈ A or V ⊂ A .

Now, as an immediate consequence of Corollaries 1.3 and 5.9, we can also state
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Theorem 5.11. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any relation
F on X on Y the following assertions are equivalent :

(1) F ⊂ Γ̃(A, B) ; (2) F [A ] ⊂ B ;

(3) for any x ∈ A we have F (x) ⊂ B ;

(4) for any x ∈ X we have either x /∈ A or F (x) ⊂ B .

Remark 5.12. Thus, in particular if A is a nonvoid subset of X, then for any
relation F on X we have F ⊂ Γ̃A if and only if F [A ] ⊂ A , or equivalently
F (x) ⊂ A for all x ∈ A .

Now, as an immediate consequence of Theorems 5.1 and 5.7, we can also easily
establish

Theorem 5.13. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any U ⊂ X
and V ⊂ Y , with U 6= ∅ and V 6= Y , the following assertions are equivalent :

(1) V = Γ̃(A, B) [U ] ; (2) U ⊂ A and B = V .

Proof. If (1) holds, then by Theorem 5.1, we have U ⊂ A and B ⊂ V . Hence, by
Theorem 5.7, it is clear that V ⊂ B also holds. Thus, (1) implies (2) . By the the
above mentioned theorems, the converse implication is even more obvious.

Remark 5.14. Thus, in particular if A is a nonvoid subset of X, then for any
U , V ⊂ X, with U 6= ∅ and V 6= Y , we have V = Γ̃A [U ] if and only if U ⊂ A
and A = V .

Corollary 5.15. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any x ∈ X
and V ⊂ Y , with V 6= Y , the following assertions are equivalent :

(1) V = Γ̃(A, B)(x) ; (2) x ∈ A and B = V .

Remark 5.16. Thus, in particular if A is a nonvoid subset of X, then for any
x ∈ X and V ⊂ X, with V 6= X, we have V = Γ̃A(x) if and only if x ∈ A and
A = V .

Now, as an immediate consequence of Theorems 5.5 and 5.11, we can also state

Theorem 5.17. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any relation
F on X on Y the following assertions are equivalent :

(1) F = Γ̃(A, B) ;

(2) F [A ] ⊂ B ⊂ F c [A ]c and Y = F c [Ac ]c ;

(3) for any x ∈ A we have F (x) = B , and for any x ∈ Ac we have F (x) = Y

(4) for x ∈ X we have
(
x /∈ A and F (x) = Y

)
or

(
F (x) = Y and B = Y

)
or

(
x ∈ A and F (x) = B

)
.

Remark 5.18. Thus, in particular if A is a nonvoid subset of X, then for any
relation F on X we have F = Γ̃A if and only if F [A ] ⊂ A ⊂ F c [A ]c and
X = F c [Ac ]c , or equivalently for any x ∈ A we have F (x) = A , and for any
x ∈ Ac we have F (x) = X .

By using Theorems 5.1 and 5.7, we can also easily prove the following
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Theorem 5.19. If A , C ⊂ X and B and D are nonvoid subsets of Y such that
D 6= Y , then for any nonvoid subsets U and V of X the following assertions are
equivalent :

(1) Γ̃(A, B) [U ] ⊂ Γ̃(C, D) [V ] ; (2) V 6⊂ C or
(
U ⊂ A and B ⊂ D

)
.

Proof. By Theorem 5.7, we have

V ⊂ Γ̃(A, B) [U ] ⇐⇒ U 6⊂ A or V ⊂ B .

Moreover, by Theorem 5.1, we have

Γ̃(A, B) [U ] ⊂ V ⇐⇒ U ⊂ A and B ⊂ V .

Therefore, (1) and (2) are also equivalent.

Remark 5.20. Thus, if in particular A and B are nonvoid subsets of X such that
B 6= X, then for any nonvoid subsets U and V of X we have Γ̃A [U ] ⊂ Γ̃B [V ] if
and only if either V 6⊂ B or

(
U ⊂ A and A ⊂ B

)
.

Corollary 5.21. If A , C ⊂ X and B and D are nonvoid subsets of Y such
that D 6= Y , then for any x , y ∈ X the following assertions are equivalent :

(1) Γ̃(A, B)(x) ⊂ Γ̃(C, D)(y) ; (2) y /∈ C or
(
x ∈ A and B ⊂ D

)
.

Remark 5.22. Thus, if in particular A and B are nonvoid subsets of X such
that B 6= X, then for any x , y ∈ X we have Γ̃A(x) ⊂ Γ̃B (y) if and only if either
y /∈ B or

(
x ∈ A and A ⊂ B

)
.

Theorem 5.23. If A , C ⊂ X such that C 6= ∅ and B and D are nonvoid subset
of Y such that D 6= Y , then the following assertions are equivalent :

(1) Γ̃(A, B) ⊂ Γ̃(C, D) ; (2) C ⊂ A and B ⊂ D ;

Proof. By Corollaries 1.3 and 5.21, we can see that

Γ̃(A, B) ⊂ Γ̃(C, D) ⇐⇒ ∀ x ∈ X : Γ̃(A, B)(x) ⊂ Γ̃(C, D)(x)

⇐⇒ ∀ x ∈ X : x /∈ C or
(
x ∈ A and B ⊂ D

)
even if C = ∅ . Hence, it is clear that now (1) and (2) are also equivalent.

Remark 5.24. Thus, if in particular A , B ⊂ X such that ∅ 6= B 6= X, then
Γ̃A ⊂ Γ̃B if and only if A = B .

Namely, because of Γ̃∅ = X 2 and Γ̃B 6= X 2, the inclusion Γ̃A ⊂ Γ̃B implies
that A 6= ∅ . ( For some finer statements, see Levine [ 8 , p. 99 ] .)

Theorem 5.25. If A , C ⊂ X and B and D are proper, nonvoid subsets of Y ,
then for any nonvoid subsets U and V of X the following assertions are equivalent :

(1) Γ̃(A, B) [U ] = Γ̃(C, D) [V ] ;

(2)
(
U 6⊂ A and V 6⊂ C

)
or

(
U ⊂ A , V ⊂ C and B = D

)
.

Proof. By Theorem 5.19, we have

Γ̃(A, B) [U ] ⊂ Γ̃(C, D) [V ] ⇐⇒ V 6⊂ C or
(
U ⊂ A and B ⊂ D

)
and

Γ̃(C, D) [V ] ⊂ Γ̃(A, B) [U ] ⇐⇒ U 6⊂ A or
(
V ⊂ C and D ⊂ B

)
.

Hence, it is clear that the required assertions are also equivalent.
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Remark 5.26. Thus, in particular if A and B are proper, nonvoid subsets of X,
then any nonvoid subsets U and V of X we have Γ̃A [U ] = Γ̃B [V ] if and only if
either

(
U 6⊂ A and V 6⊂ B

)
or

(
U ⊂ A , V ⊂ B and A = B

)
.

Corollary 5.27. If A , C ⊂ X and B and D are proper, nonvoid subsets of Y ,
then for any x , y ∈ X the following assertions are equivalent :

(1) Γ̃(A, B)(x) = Γ̃(C, D)(y) ;

(2)
(
x /∈ A and y /∈ C

)
or

(
x ∈ A , y ∈ C and B = D

)
.

Remark 5.28. Thus, in particular if A and B are proper, nonvoid subsets of X,
then for any x , y ∈ X we have Γ̃A(x) = Γ̃B (y) if and only if either

(
x /∈ A and

y /∈ B
)

or
(
x ∈ A , y ∈ B and A = B

)
Now, as an immediate consequence of Theorem 5.23, we can also state

Theorem 5.29. If A , C ⊂ X and B and D are proper, nonvoid subsets of Y ,
then the following assertions are equivalent :

(1) Γ̃(A, B) = Γ̃(C, D) ; (2) A = C and B = D .

Remark 5.30. Thus, in particular for any proper, nonvoid subsets A and B of
X, we have Γ̃A = Γ̃B if and only if A = B .

6. Further inclusions on totalization relations

Theorem 6.1. If A ⊂ X and B ⊂ Y such that B 6= ∅ , and F is a relation on
X to Y , then for any U , V ⊂ X, with U 6= ∅ and F [V ] 6= Y , the following
assertions are equivalent :

(1) Γ̃(A, B) [U ] ⊂ F̃ [V ] ; (2) V 6⊂ DF or
(
U ⊂ A and B ⊂ F [V ]

)
.

Proof. By Theorem 4.4, we have

Γ̃(A, B) [U ] ⊂ F̃ [V ] ⇐⇒ V 6⊂ DF or Γ̃(A, B) [U ] ⊂ F [V ] .

Moreover, by Theorem 5.1, we have

Γ̃(A, B) [U ] ⊂ F [V ] ⇐⇒ U ⊂ A and B ⊂ F [V ] .

Therefore, (1) and (2) are also equivalent.

Remark 6.2. Thus, in particular if A is a nonvoid subset of X and F is a
relation on X, then for any U , V ⊂ X, with U 6= ∅ and F [V ] 6= X, we have
Γ̃A [U ] ⊂ F̃ [V ] if and only if V 6⊂ DF or U ⊂ A ⊂ F [V ] .

Corollary 6.3. If A ⊂ X and B ⊂ Y such that B 6= ∅ , and F is a relation
on X to Y , then for any x , y ∈ X, with F (y) 6= Y , the following assertions are
equivalent :

(1) Γ̃(A, B)(x) ⊂ F̃ (y) ; (2) y /∈ DF or
(
x ∈ A and B ⊂ F (y)

)
.
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Remark 6.4. Thus, in particular if A is a nonvoid subset of X and F is a relation
on X, then for any x , y ∈ X, with F (y) 6= X, we have Γ̃A(x) ⊂ F̃ (y) if and
only if y /∈ DF or x ∈ A ⊂ F (y) .

Theorem 6.5. If A ⊂ X and B ⊂ Y such that B 6= ∅ then for any relation F
on X to Y the following assertions are equivalent :

(1) Γ̃(A, B) ⊂ F̃ ;

(2) for any x ∈ DF we have either F (x) = Y or
(
x ∈ A and B ⊂ F (x)

)
;

(3) for any x ∈ X we have x /∈ DF or F (x) = Y or
(
x ∈ A and B ⊂ F (x)

)
;

(4) for any x ∈ X, with F (x) 6= Y , we have either x /∈ DF or
(
x ∈ A and

B ⊂ F (x)
)
.

Proof. Define A =
{

x ∈ X : F (x) 6= Y
}

. Then, by Corollaries 1.3 and 6.3, we
can see that

Γ̃(A, B) ⊂ F̃ ⇐⇒ ∀ x ∈ X : Γ̃(A, B)(x) ⊂ F̃ (x) ⇐⇒

∀ x ∈ A : Γ̃(A, B)(x) ⊂ F̃ (x) ⇐⇒ x /∈ DF or
(
x ∈ A and B ⊂ F (x)

)
.

Therefore, (1) and (4) are equivalent. Moreover, we can easily see that (3) is
equivalent to both (2) and (4).

Remark 6.6. Thus, in particular if A is a nonvoid subset of X, then for any
relation F on X we have Γ̃A ⊂ F̃ if and only if for any x ∈ X, with F (x) 6= X,
we have either x /∈ DF or x ∈ A ⊂ F (x) .

Analogously to Theorem 6.1, we can also easily prove the following

Theorem 6.7. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , and F
is a relation on X to Y , then for any U , V ⊂ X, with U 6= ∅, the following
assertions are equivalent :

(1) F̃ [V ] ⊂ Γ̃(A, B) [U ] ; (2) U 6⊂ A or
(
V ⊂ DF and F [V ] ⊂ B

)
.

Proof. By Theorem 5.7, we have

F̃ [V ] ⊂ Γ̃(A, B) [U ] ⇐⇒ U 6⊂ A or F̃ [V ] ⊂ B .

Moreover, by Theorem 4.1, we have

F̃ [V ] ⊂ B ⇐⇒ V ⊂ DF and F [V ] ⊂ B .

Therefore, (1) and (2) are also equivalent.

Remark 6.8. Thus, in particular if A is a proper, nonvoid subset of X and F is
a relation on X, then for any U , V ⊂ X, with U 6= ∅, we have F̃ [V ] ⊂ Γ̃A [U ]
if and only if U 6⊂ A or

(
V ⊂ DF and F [V ] ⊂ A

)
.

Corollary 6.9. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , and F
is a relation on X to Y , then for any x , y ∈ X the following assertions are
equivalent :

(1) F̃ (y) ⊂ Γ̃(A, B)(x) ; (2) x /∈ A or
(
y ∈ DF and F (y) ⊂ B

)
.
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Remark 6.10. Thus, in particular if A is a proper, nonvoid subset of X and F
is a relation on X, then for any x , y ∈ X, we have F̃ (y) ⊂ Γ̃A(x) if and only if
x /∈ A or

(
y ∈ DF and F (y) ⊂ A

)
.

Now, as an immediate consequence of Corollaries 1.3 and 6.9, we can also state

Theorem 6.11. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , then for
any relation F on X to Y , the following assertions are equivalent :

(1) F̃ ⊂ Γ̃(A, B) ; (2) A ⊂ DF and F [A ] ⊂ B ;

(3) for any x ∈ A we have x ∈ DF and F (x) ⊂ B ;

(4) for any x ∈ X we have either x /∈ A or
(
x ∈ DF and F (x) ⊂ B

)
.

Remark 6.12. Thus, in particular if A is a proper, nonvoid subset of X, then
for any relation F on X, we have F̃ ⊂ Γ̃A if and only if F [A ] ⊂ A ⊂ DF , or
equivalently for any x ∈ A we have x ∈ DF and F (x) ⊂ A .

Now, as an immediate consequence of Theorems 6.1 and 6.7, we can also state

Theorem 6.13. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , and F is
a relation on X to Y , then for any U , V ⊂ X, with U 6= ∅ and F [V ] 6= Y , the
following assertions are equivalent :

(1) Γ̃(A, B) [U ] = F̃ [V ] ;

(2)
(
U 6⊂ A and V 6⊂ DF

)
or

(
U ⊂ A , V ⊂ DF and B = F [V ]

)
.

Proof. By Theorem 6.1, we have

Γ̃(A, B) [U ] ⊂ F̃ [V ] ⇐⇒ V 6⊂ DF or
(
U ⊂ A and B ⊂ F [V ]

)
.

Moreover, by Theorem 6.7, we have

F̃ [V ] ⊂ Γ̃(A, B) [U ] ⇐⇒ U 6⊂ A or
(
V ⊂ DF and F [V ] ⊂ B

)
.

Hence, it is clear (1) and (2) are also equivalent.

Remark 6.14. Thus, if in particular if A is a proper, nonvoid subset of X and
F is a relation on X, then for any U , V ⊂ X, with U 6= ∅ and F [V ] 6= X, we
have Γ̃A [U ] = F̃ [V ] if and only if

(
U 6⊂ A and V 6⊂ DF

)
or

(
U ⊂ A , V ⊂ DF

and A = F [V ]
)
.

Corollary 6.15. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , and F
is a relation on X to Y , then for any x , y ∈ X, with F (x) 6= Y , the following
assertions are equivalent :

(1) Γ̃(A, B)(x) = F̃ (y) ;

(2)
(
x /∈ A and y /∈ DF

)
or

(
x ∈ A , y ∈ DF and B = F (y)

)
.

Remark 6.16. Thus, in particular if A ⊂ X such that A 6= ∅ and A 6= X,
and F is a relation on X, then for any x , y ∈ X, with F (x) 6= X, we have
Γ̃A(x) = F̃ (y) if and only if either

(
x /∈ A and y /∈ DF

)
or

(
x ∈ A , y ∈ DF

and A = F (y)
)
.

Now, as an immediate consequence of Corollaries 1.4 and 6.15, we can also state
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Theorem 6.17. If A ⊂ X and B ⊂ Y such that B 6= ∅ and B 6= Y , then for
any relation F on X to Y , the following assertions are equivalent :

(1) Γ̃(A, B) = F̃ ;

(2) for any x ∈ A ∩DF we have F (x) = B and for any x ∈ DF \A we have
F (x) = Y ;

(3) for any x ∈ X we have x /∈ A ∪ DF or
(
x /∈ A and F (x) = Y

)
or(

x ∈ A ∩DF and F (x) = B
)
.

Remark 6.18. Thus, in particular if A is a proper, nonvoid subset of X, then
for any relation F on X we have Γ̃A = F̃ if and only if for any x ∈ A ∩DF we
have F (x) = A and for any x ∈ DF \A we have F (x) = X.

7. Some applications to relator spaces

A family R on relations on one set X to another Y is called a relator on X to
Y . Moreover, the ordered pair (X, Y )(R ) =

(
( X, Y ), R

)
is called a relator

space. For the origins of this notion, see [ 15 ] and the references therein.
If in particular R is a relator on X to itself, then we may simply say that R is

a relator on X . Moreover, by identifying singletons with their elements, we may
naturally write X (R) in place of ( X, X )(R ) .

Quite similarly, if R is a relation on X to Y , then we may simply write
( X, Y )(R ) in place of (X, Y )({R}) . More generally, the same convention can
also be applied when F is a function of relators on X to Y .

Relator spaces of the simpler type X (R) and X (R) are substantial genera-
lizations of ordered sets and uniform spaces [ 3 ] . However, they are insufficient
to include the theory of context spaces [ 4 ] , and to naturally express continuity
properties of relations [ 18 ] .

If R is a relator on X to Y , then for any A ⊂ X and B ⊂ Y , we write :

(1) A ∈ IntR( B ) if R [A ] ⊂ B for some R ∈ R ;

(2) A ∈ LbR( B ) if B ⊂ Rc [A ]c for some R ∈ R .

To see the appropriateness of the latter apparently very strange definition, recall
that, by the corresponding definition and Theorem 1.14, we have

R [A ] =
⋃

a∈A

R (a) and Rc [A ]c =
⋂

a∈A

R (a) .

Thus, in particular B ⊂ Rc [A ]c if and only if B ⊂ R (a) for all a ∈ A . That is,
b ∈ R(a) , i. e., aR b for all a ∈ A and b ∈ B . Therefore, A is a lower bound of
B with respect to R .

In this respect, it is also worth noticing that B ⊂ Rc [A ]c if and only if
Rc [A ] ⊂ B c . Therefore,

LbR( B ) = IntRc ( B c) and IntR( B) = LbRc (B c) ,
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where Rc = {Rc : R ∈ R} . Thus, in contrast to a common belief, the basic
topological and order theoretic notions can be expressed in terms of each other.
This fact, and the use of the notation Lb , was first put forward in [ 19 ] .

Now, if R is a relator on X to Y , then for any x ∈ X and B ⊂ Y , we may
simply write :

(3) x ∈ intR( B ) if {x} ∈ IntR( B ) ; (4) x ∈ lbR( B ) if {x} ∈ LbR(B ) ;

(5) B ∈ ER if intR( B ) 6= ∅ ; (6) B ∈ LR if lbR(B ) 6= ∅ .

Moreover, if in particular R is a relator on X, then for any A ⊂ X we may also
write :

(7) A ∈ τR if A ∈ IntR(A ) ; (8) A ∈ TR if A ⊂ intR( A ) ;

(9) A ∈ lR if A ∈ LbR( A ) ; (10) A ∈ LR if A ⊂ lbR( A ) .

The relations IntR and intR are called the proximal and topological interiors
on Y to X induced by R , respectively. While, the members of the families τR ,
TR , and ER are called the proximally open, topologically open and fat subsets of
X (R) , respectively.

The use of notation Int instead of b was first suggested in [ 15 ] . While, the
fact that the fat sets are usually more important tools than the open ones was first
stressed in [ 16 ] , and at the Seventh Topological Symposium in Prague in 1991.

Now, by Remark 2.2 and Definition 2.1, we may naturally introduce the following
generated relators.

Definition 7.1. For any family A ⊂ P (X) , we define

RA =
{

ΓA : A ∈ A
}

.

Moreover, for any relations f and F on P (Y ) to X and P (X ) , respectively, we
define

Rf =
{

Γ(a, B) : a ∈ f (B)
}

and RF =
{

Γ(A, B) : A ∈ F (B)
}

.

Remark 7.2. Note that if in particular FA is the identity function of A , then
RA = RFA .

While, if in particular Ff (B) =
{
{a} : a ∈ f (B)

}
for all B ⊂ Y , then

Rf = RFf
.

Moreover, by Definition 2.7, we may also also naturally introduce the following
totalization relator.

Definition 7.3. For any relator R on X to Y , we define

R̃ =
{

R̃ : R ∈ R} .

Remark 7.4. Now, for any family A of subsets of X and relation Int on X, the
totalizations R̃A and R̃Int may be called the Davis–Pervin and the Hunsaker–
Lindgren relators on X generated by A and Int , respectively.

By using Theorem 5.1, concerning an obvious generalization of the latter relator,
we can easily prove the following
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Theorem 7.5. If Int is a relation on P (Y ) to P (X ) , then for any U ⊂ X
and V ⊂ Y , with U 6= ∅ and V 6= Y , the following assertions are equivalent :

(1) U ∈ IntR̃Int
(V ) ;

(2) A ∈ Int (B) for some A ⊂ X and B ⊂ Y with U ⊂ A and ∅ 6= B ⊂ V .

Proof. By the corresponding definitions, we have (1) if and only if there exist
A ⊂ X and B ⊂ Y , with A ∈ Int(B) , such that Γ̃(A, B) [U ] ⊂ V . More-
over, from Theorem 5.1 we can see that the latter inclusion is equivalent to the
requirements that U ⊂ A and ∅ 6= B ⊂ V . Hence, it is clear that (1) and (2) are
also equivalent.

In principle, the following theorem can be derived from Theorem 7.5 by using
Remark 7.2. However, it can be more easily proved with the help of Corollary 5.3.

Theorem 7.6. If int is a relation on P (Y ) to X , then for any x ∈ X and
V ⊂ Y , with V 6= Y , the following assertions are equivalent :

(1) x ∈ intR̃int
(V ) ;

(2) x ∈ int (B) for some B ⊂ Y with ∅ 6= B ⊂ V .

Proof. By the corresponding definitions, we have (1) if and only if there exist a ∈ X

and B ⊂ Y , with a ∈ int (B) , such that Γ̃({a}, B)(x) ⊂ V . Moreover, from
Corollary 5.2 we can see that the latter inclusion is equivalent to the requirements
that x ∈ {a} and ∅ 6= B ⊂ V . This shows that a = x . Hence, it is clear that (1)
and (2) are also equivalent.

Remark 7.7. Now, by establishing the basic properties of the relations IntR and
intR for a relator R on X to Y , we can give some necessary and sufficient
conditions on the relations Int and int on P (Y ) to P (X ) and X, respectively,
in order that the equalities Int = IntR̃Int

and int = intR̃int
could be true.

Moreover, for a relator R on X to Y , we can investigate the validity the
equalities IntR = IntR̃IntR

and intR = intR̃intR
. And, for a relator R on X to

Y , we may look for the largest relators R# and R∧ on X to Y such that the
equalities IntR = IntR# and intR = intR∧ could be true.

However, it is now more convenient to note only that, by using Remarks 5.2 and
5.4, we can also easily prove the following theorems.

Theorem 7.8. If τ ⊂ P (X ), then for any proper, nonvoid subset U of X the
following assertions are equivalent :

(1) U ∈ τR̃τ
; (2) U ∈ τ .

Proof. By the corresponding definitions, we have (1) if and only if there exists
A ∈ τ such that Γ̃A [U ] ⊂ U . Moreover, from Remark 5.2 we can see that the
latter inclusion is equivalent to the requirement that U ⊂ A ⊂ U , i. e. , A = U .
Hence, it is clear that (1) and (2) are also equivalent.
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Theorem 7.9. If T ⊂ P (X ), then for any proper, nonvoid subset U of X the
following assertions are equivalent :

(1) U ∈ TR̃T ; (2) U =
⋃
B for some B ⊂ T .

Proof. By the corresponding definitions, we have (1) if and only if for each x ∈ U

there exists Ax ∈ T such that Γ̃A(x) ⊂ U . Moreover, from Remark 5.4 we can see
that the latter inclusion is equivalent to the requirement that x ∈ Ax ⊂ U . This
shows that U =

⋃
x∈U Ax . Hence, it is clear that (1) and (2) are also equivalent.

Theorem 7.10. If E ⊂ P (X ), then for any proper, nonvoid subset U of X the
following assertions are equivalent :

(1) U ∈ ER̃E ; (2) A ⊂ U for some A ∈ E with A 6= ∅ .

Proof. By the corresponding definitions, we have (1) if and only if there exist x ∈ X

and A ∈ E such that Γ̃A(x) ⊂ U . Moreover, from Remark 5.4 we can see that
the latter inclusion is equivalent to the requirements that x ∈ A ⊂ U . Hence, it is
clear that (1) and (2) are also equivalent.

Remark 7.11. Now, by establishing the basic properties of the families τR , TR ,
and ER for a relator R on X, we can give some necessary and sufficient conditions
on the families τ , T and E of subsets of X in order that the equalities A = τR̃τ

,
A = TR̃T and A = ER̃E , respectively, could be true.

Moreover, for a relator R on X, we can investigate the validity the equalities
τR = τR̃τR

, TR = TR̃TR and ER = ER̃ER . And, for a relator R on X, we may look
for the largest relators R], Ru and R4 on X such that the equalities τR = τR] ,
TR = TRu and ER = ER4 could be true.

Unfortunately, by [ 9 , Example 5.3 ] , the relator Ru does not, in general, exist.
Moreover, by [ 12 , Remark 6.20 ] , the operation ] is not stable in the sense that in
general

{
X 2

}
6=

{
X 2

}] . Therefore, we also need the modification relators R#∞

and R∧∞ introduced in [ 9 ] and [ 10 ] .
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15. Á. Száz, Basic tools and mild continuities in relator spaces, Acta Math. Hungar. 50 (1987),

177–201.
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18. Á. Száz, Somewhat continuity in a unified framework for continuities of relations, Tatra Mt.

Math. Publ. 24 (2002), 41–56.
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20. Á. Száz, Galois-type connections on power sets and their applications to relators, Tech. Rep.,
Inst. Math. Inf., Univ. Debrecen 2 (2005), 1–38.
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