UNIVERSITY OF DEBRECEN

Relationships between inclusions for relations AND inequalities for corelations

Árpád Száz

Preprints No. 422 (Technical Reports No. 2017/4)

INSTITUTE OF MATHEMATICS

 $\boldsymbol{2017}$

RELATIONSHIPS BETWEEN INCLUSIONS FOR RELATIONS AND INEQUALITIES FOR CORELATIONS

ÁRPÁD SZÁZ

ABSTRACT. A function U on one power set $\mathcal{P}(X)$ to another $\mathcal{P}(Y)$ will be briefly called a corelation on X to Y. Thus, complementation and closure (interior) operations on X are corelations on X.

Moreover, for any two corelations U and V on X to Y, we shall write $U \leq V$ if $U(A) \subseteq V(A)$ for all $A \subseteq X$. Thus, the family of all corelations on X to Y also forms a complete poset (partially ordered set).

Formerly, we have established a partial Galois connection $(\triangleright, \triangleleft)$ between relations and corelations. Now, by using this, we shall establish some further relationships between inclusions for relations and inequalities for corelations.

For instance, for some very particular corelations U and V on X to Y, with $U^{\triangleleft} \leq V^{\triangleleft}$, we shall prove the existence of an union-preserving corelation Φ on X to Y which separates U and V in the sense that $U \leq \Phi \leq V$.

1. INTRODUCTION

In our former paper [17], a function U on one power set $\mathcal{P}(X)$ to another $\mathcal{P}(Y)$ has been briefly called a corelation on X to Y. Thus, complementation and closure (interior) operations on X are corelations on X.

If R is a relation on X to Y, i.e., $R \subseteq X \times Y$, then the function R^{\triangleright} , defined by $R^{\triangleright}(A) = R[A] = \bigcup_{x \in A} R(x)$ for all $A \subseteq X$, can be easily seen to be a union-preserving corelation on X to Y which may be identified with R.

Conversely, if U is a corelation on X to Y, then we may naturally define a relation U^{\triangleleft} on X to Y such that $U^{\triangleleft}(x) = U(\{x\})$ for all $x \in X$. Moreover, for the corelation U, we may also naturally write $U^{\circ} = (U^{\triangleleft})^{\triangleright}$.

Namely, for any two corelations U and V on X to Y, we may also naturally write $U \leq V$ if $U(A) \subseteq V(A)$ for all $A \subseteq X$. Thus, the family of all corelations on X to Y also forms a complete poset (partially ordered set).

Moreover, we can show that the functions \triangleright and \triangleleft establish a partial Galois connection in the sense that, for an arbitrary relation R and a quasi-increasing corelation U on X to Y, we have $R^{\triangleright} \leq U$ if and only if $R \subseteq U^{\triangleright}$.

Now, a corelation U on X to Y may be briefly called open (quasi-increasing) if $U \leq U^{\circ} (U^{\circ} \leq U)$. Moreover, we can easily see that U is union-preserving if and only if $U = U^{\circ}$. That is, U is both open and quasi-increasing.

²⁰¹⁰ Mathematics Subject Classification. 06A15, 54C60.

Key words and phrases. Relations, setfunctions, Galois connections.

The work of the author has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651.