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Abstract. This paper contains improved and enlarged versions of the remarks

and problems of the author delivered to the Conference on Inequalities and
Applications, Hajdúszoboszló, Hungary, 2016.

In particular, the following closely related subjects are investigated:

1. Upper and lower left-invariant generalized metrics

2. Galois connection between generalized metrics and norms
3. Semimetrics and preseminorms on groups

4. Semi-inner products on groups

5. Further properties of the induced generalized seminorm
6. Two basic properties of the parallelepiped equation

7. Parapreseminorms should also be investigated

8. Sub-quadratic and super-quadratic functions are usually quadratic
9. A generalizations of the quadrilateral inequality

10. Two characterizations of additive functions

11. Problems in connection with the Páles equation

Moreover, to motivate some further similar investigations, a rather com-

plete list of relevant references is included.

1. Upper and lower left-invariant generalized metrics

In our unfinished paper [208] , we have proved the following

Theorem 1.1. If X is a group, then for a function d of X 2 to R , the following
assertions are equivalent :

(1) d (0, y) = d (x, x+ y ) for all x, y ∈ X ,

(2) d (x, y) = d (0, −x+ y) for all x, y ∈ X ,

(3) d (x, y) = d ( z + x, z + y ) for all x, y, z ∈ X .

(4) d ( z + x, z + y ) ≤ d (x, y) for all x, y, z ∈ X ,

(5) d (x, y) ≤ d ( z + x, z + y ) for all x, y, z ∈ X .
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Hint. Note that if (2) holds, then we have

d ( z + x, z + y ) = d
(
0,−(z + x) + z + y

)
= d

(
0,−x− z + z + y

)
= d (0,−x+ y) = d (x, y)

for all x, y, z ∈ X, and thus (3) also holds.

While, if for instance (4) holds, then by writing −z+x in place of x and −z+y
in place of y in (4), we obtain

d (x, y) ≤ d (−z + x, −z + y ) .

for all x, y, z ∈ X. Hence, by writing −z in place of z , we can already see that

d (x, y) ≤ d ( z + x, z + y )

for all x, y, z ∈ X. Thus, (3) also holds.

Definition 1.2. Now, the function d may be naturally called upper left-invariant
(lower left-invariant) if

d (0, y) ≤ d (x, x+ y )
(
d (x, x+ y ) ≤ d (0, y)

)
for all x, y ∈ X.

Remark 1.3. Moreover, the function d may be naturally called left-invariant if
it is both upper and lower left-invariant.

Clearly, d is lower left-invariant if and only if −d is upper left-invariant. There-
fore, d is left-invariant if and only if both d and −d are upper left-invariant.

Concerning upper and lower left-invariant metrics, in our former papers [206]
and [209] , we have established some straightforward generalizations of the follo-
wing illustrating examples.

Example 1.4. The usual metric d , defined for any x, y ∈ R by

d (x, y) = |x− y | ,

is both upper and lower left-invariant.

Example 1.5. The bounded metric d , defined for any x, y ∈ R by

d (x, y) = |ϕ(x)− ϕ(y) | , where ϕ (x) = x/(1 + |x | ) ,

is neither upper nor lower left-invariant.

Example 1.6. The postman metric d , defined for any x, y ∈ C by

d (x, y) = 0 if x = y and d (x, y) = |x | + | y | if x 6= y .

is upper left-invariant, but not lower left-invariant.

Problem 1.7. However, I do not know :

What can be said about the upper and lower left-invariances of a common gener-
alization of the postman, radial and river metrics given in our former paper [200] ?

Some of the statements and proofs of this paper are too difficult for me. There-
fore, their validity should be checked by some other mathematicians.
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Remark 1.8. Moreover, the upper and lower left-invariance properties of several
other curious metrics could also be investigated.

For instance, in [98] , [178] and [147, p. 482] , one can find the striking metrics
defined by

d (x, y) =
|x− y |√
x+ y

for x, y ∈ R+ ,

d (x, y) =
|x− y |
|x | + | y |

for x, y ∈ R with |x |+ | y | 6= 0

and

d (x, y) =
|x− y |√

1 + |x |2
√

1 + | y |2
for x, y ∈ C ,

The second and the third ones are called the multiplicative and chordal metrics,
respectively. They were substantially generalized by Klamkin and Meir [111] .

However, the most complete account on distance functions can be found in Deza
and Deza [38] . Moreover, several curious metrics can be derived from generalized
metrics by [11] .

Remark 1.9. At this point, it is also worth mentioning that several metrics can
also be derived from a metric d on a set X by defining

ρ (x, y) = f
(
d (x, y )

)
for all x, y ∈ X , with a suitable function f of R+ to itself (see Corazza [35]), or

ρ (u, v) = d
(
ϕ (u), ϕ (v)

)
for all u and v in a set U , with an injective function ϕ of U to X .

Remark 1.10. If in particular U is a group, X is a vector space and d is derived
from a norm on X, then the lower left-invariance of the latter metric ρ means
only that

‖ − ϕ (u) + ϕ (u+ v) ‖ ≤ ‖ − ϕ (0) + ϕ (v) ‖
for all u, v ∈ U , or equivalently

‖ − ϕ (−u) + ϕ (v) ‖ ≤ ‖ − ϕ (0) + ϕ (u+ v) ‖

for all u, v ∈ U .

Note that if in particular ϕ is odd, then latter condition is equivalent to the
requirement that

‖ϕ (u) + ϕ (v) ‖ ≤ ‖ϕ (u+ v) ‖
for all u, v ∈ U . This property, even if ϕ is not assumed to be injective, usually
implies not only that ϕ is odd, but also that ϕ is additive. ( See [141] and [207] .)
Therefore, ρ is actually left-invariant.

Remark 1.11. Characterizations of norms derivable from inner products can be
found in Amir [10] , Istrǎtescu [97] and Alsina, Sikorska and Tomás [9] .

However, the most fundamental discoveries were already made by Fréchet [71] ,
Jordan and von Neumann [101] , and Ficken [63] .

While, metrics derivable from norms have only been explicitly studied by Oikhberg
and Rosenthal [155] , Šemrl [182, 183] and Chmieliński [30, 31] .
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Moreover, the equivalence of norms to norms derived from inner products have
been studied by Joichi [100] and Chmieliński [29] . However, equivalences of met-
rics to metrics derived from norms seem not to be investigated.

Remark 1.12. At a future conference, Jacek Chmieliński should be asked to hold
a survey talk or a special session on the above mentioned subjects which allow of
important applications of functional equations and inequalities.

2. Galois connection between generalized metrics and norms

In our former paper [206] , for a group X, we considered the sets

N = N (X) = RX and M =M(X) = RX 2

,

to be equipped with the usual pointwise inequality of real-valued functions.

Moreover, having in mind a well-known connection between norms and metrics
in vector spaces, for any p ∈ N , d ∈M and x, y ∈ X we defined

pd(x) = d (0, x) and dp(x, y) = p (−x+ y) .

Thus, it can be easily seen that, for any p ∈ N and d ∈M ,

(1) dp ≤ d =⇒ p ≤ pd , (2) p ≤ pd =⇒ dp ≤ dpd
.

Moreover, if in particular d is as in Example 1.5, then dpd
6≤ d , despite that

p = pdp for all p ∈ N .

Therefore, by defining

M∧ =M∧(X) =
{
d ∈M (X) : dpd

≤ d
}
,

we can note that the functions, defined by

f (p) = dp and g (d) = pd

for all p ∈ N and d ∈M∧, establish an increasing Galois connection between the
posets N and M∧ in the sense that, for any p ∈ N and d ∈M∧, we have

f (p) ≤ d ⇐⇒ p ≤ g (d) .

Thus, several consequences of the definitions of pd and dp can be derived from
the corresponding results on increasing Galois connections [199, 201] . However,
because of the simplicity of the present definitions, it is frequently more convenient
to apply some direct proofs.

To let the reader feel the importance of the above mentioned Galois connection,
we note that if in particular p ∈ N is a preseminorm on X in the sense that

(1) p(0) ≤ 0 , (2) p (−x ) ≤ p (x) , (3) p (x+ y) ≤ p (x) + p (y)

for all x, y ∈ X, then dp is a left-invariant semimetric on X such that

d (p (x), p (y)) = | p (x)− p (y) | ≤ dp(x, y)

for all x, y ∈ X.

While, if d is a left-invariant semimetric on X, then pd is a preseminorm on
X such that d = dpd

. Therefore, preseminorms and left-invariant semimetrics are
equivalent tools in a group.
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However, in contrast to the opinions of several authors, the former ones, being
a function of only one variable, are certainly more convenient tools than the lat-
ter ones. ( Curiously enough, norms were even called metrics by Jordan and von
Neumann [101] .)

In this respect, it is also worth mentioning that if in particular d is as in Example
1.6, then d ∈M∧(C) , but d 6= dpd

.

Concerning the family M∧ , in [206] , we have also proved the following

Theorem 2.1. For any d ∈M , the following assertions are equivalent :

(1) d ∈M∧,

(2) d is upper left-invariant ,

(3) p ≤ pd implies dp ≤ d for all p ∈ N ,

(4) d (0, −x+ y) ≤ d (x, y) for all x, y ∈ X .

Proof. By the definition of M∧, (1) means only that

dpd
(x, y) ≤ d (x, y)

for all x y ∈ X. Hence, by using that

dpd
(x, y) = pd(−x+ y) = d (0,−x+ y )

for all x, y ∈ X, we can see that (1) and (4) are equivalent. Moreover, from the
proof of Theorem 1.1, it is clear that (2) and (4) are also equivalent.

Thus, it remains only to prove that (1) and (4) are also equivalent. For this,
note if p ∈ N and p ≤ pd , then by the definition of dp we also have dp ≤ dpd

.
Hence, if (1) holds, we can infer that dp ≤ d , and thus (3) also holds. While, if (3)
holds, the from the trivial inequality pd ≤ pd we can already infer that dpd

≤ d ,
and thus (1) also holds.

3. Semimetrics and preseminorms on groups

The following definition of semimetrics, which uses inequalities instead of equali-
ties in its first two axioms too, is certainly more uniform than that of pseudometrics
used by Kelley [108, p. 119] and Ansari [12, p. 9] , for instance.

Definition 3.1. For any set X, a function d of X 2 to R is called semimetric on
X if

(a) d (x, x) ≤ 0 for all x ∈ X,

(b) d (y, x) ≤ d (x, y) for all x, y ∈ X,

(c) d (x, z) ≤ d (x, y) + d (y, z) for all x, y, z ∈ X.

The appropriateness of this definition is apparent from the following

Theorem 3.2. If d is a semimetric on X, then

(1) d (x, x) = 0 for all x ∈ X,

(2) d (x, y) ≥ 0 for all x, y ∈ X,

(3) d (x, y) = d (y, x) for all x, y ∈ X,
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(4) | d (x, y)− d (x, z) | ≤ d (y, z) for all x, y, z ∈ X,

(5) | d (x, y)− d (z, w) | ≤ d (x, z) + d (y, w) for all x, y, z, w ∈ X.

Hint. Assertion (5) can, most briefly, be proved with the help of (3) and (4).

Remark 3.3. Note that if d is a function of X 2 to R satisfying only (b) and (c),
then we already have d (x, y) ≥ 0 for all x, y ∈ X.

Therefore, by defining for any x, y ∈ X

ρ (x, y) = 0 if x = y and ρ (x, y) = d (x, y) if x 6= y ,

we can obtain a semimetric ρ on X.

Now, by using Definition 3.1, we may also naturally introduce

Definition 3.4. A semimetric d on X is called a metric if d (x, y) = 0 implies
x = y for all x, y ∈ X.

Remark 3.5. Thus, by (2) in Theorem 3.2, we can state that a semimetric on X
is a metric if and only if d (x, y) ≤ 0 implies x = y for all x, y ∈ X.

In [208] , analogously to [197, Definition 1.1] , we have also introduced the
following

Definition 3.6. A function p of a group X to R is called a preseminorm on X if

(a) p (0) ≤ 0 ,

(b) p (−x) ≤ p (x) for all x ∈ X ,

(c) p (x+ y) ≤ p (x) + p (y) for all x, y ∈ X .

The appropriateness of this definition is apparent from the following

Theorem 3.7. If p is a preseminorm on X, then

(1) p (0) = 0 ,

(2) p (x) ≥ 0 for all x ∈ X ,

(3) p (x) = p (−x) for all x ∈ X ,

(4) | p (x)− p (y) | ≤ p (x− y) for all x, y ∈ X ,

(5) p ( k x ) ≤ | k | p (x) for all k ∈ Z and x ∈ X .

Hint. Assertions (1)–(4) can, most briefly, be proved by using Theorem 3.2 and the
results of Section 2.

Remark 3.8. Note that if p is a function of X to R satisfying only (b) and (c)
in Definition 3.6, then we already have p (x) ≥ 0 for all x ∈ X.

Therefore, by defining

q (x) = 0 for x = 0 and q (x) = p (x) for x ∈ X \ {0} ,

we can obtain a preseminorm q on X.

Now, by using Definition 3.6, we may also naturally introduce
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Definition 3.9. A preseminorm p on a group X is called a seminorm if

n p (x) ≤ p (nx )

for all n ∈ N and x ∈ X.

Thus, by using Theorem 3.7 and the fact that −nx = (−n)x for all n ∈ N and
x ∈ X, we can easily prove the following

Theorem 3.10. If p is a seminorm on X, then for any k ∈ Z and x ∈ X we
have

p ( k x ) = | k | p (x) .

Now, by using Definitions 3.6 and 3.9, we may also naturally introduce

Definition 3.11. A seminorm (preseminorm) p on a group X is be called a norm
(prenorm) if p (x) = 0 implies x = 0 for all x ∈ X .

Thus, by using Theorem 3.7, we can easily prove the following

Theorem 3.12. If p is a nonzero seminorm (preseminorm) on X and X = Zx
for all x ∈ X with x 6= 0 , then p is a norm (prenorm) on X.

Proof. If this is not the case, then there exists x ∈ X, with x 6= 0 , such that
p (x) = 0 . Now, by using Theorem 3.7, we can see that

0 ≤ p (k x) ≤ | k | p (x) = 0 ,

and thus p (k x) = 0 for all k ∈ Z . Hence, by using that X ⊆ { k x : k ∈ Z } , we
can infer that p (u) = 0 for all u ∈ X. This contradiction proves the theorem.

From this theorem, by using Lagrange’s theorem, we can immediately derive

Corollary 3.13. If p is a nonzero seminorm (preseminorm) on X and the order
n = card(X) of X is a prime, then p is a norm (prenorm) on X.

Proof. If x ∈ X such that x 6= 0 , then it is clear that Y = Zx is a subgroup of
X such that 1 < k = card (Y ) ≤ card (X) = n . Moreover, by Lagrange’s theorem
[173, p. 11] , we can also state that k divides n. Hence, since n is prime, it follows
that k = n , and thus Y = X also holds. Therefore, by Theorem 3.12, the required
assertion is also true.

The following remark, established with the help of Gábor Horváth, shows that
the latter two results can only have a very limited range of applicability.

Remark 3.14. For any group X, the following assertions are equivalent :

(1) card (X) is a prime ,

(2) X = Zx for all x ∈ X with x 6= 0 ,

(3) X has no nontrivial proper subgroup ,

(4) for any x ∈ X , with x 6= 0 , the order

nx = inf
{
n ∈ N : nx = 0

}
of x is a prime and

X =
{

0, x, 2x, . . . , (nx − 1)x
}

such that the above elements are pairwise distinct.
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Since the implication (1) =⇒ (2) has been established in the proof of Corollary
3.13, and the implications (2)⇐⇒ (3) and (4) =⇒ (1) are quite obvious, we need
only show that (2) implies (4).

For this, we first note that there exists n ∈ N such that nx = 0 , and thus
nx 6= +∞ . Namely, if 2x = 0 , then the required assertion is true. While, if
2x 6= 0 , then by (2) we have X = Z (2x) . Thus, in particular, there exists k ∈ Z
such that x = k (2x) . Hence, we can infer that

( 1− 2 k )x = 0 and ( 2 k − 1 )x = 0 .

Thus, since either 1− 2 k > 0 or 2 k− 1 > 0 , the required assertion is again true.

Now, since N is well-ordered, it is clear

nx = min
{
n ∈ N : nx = 0

}
.

Moreover, since 1x = x 6= 0, it is clear that nx > 1 . Furthermore, by (2) and a
basic theorem of algebra [173, p. 12] , we can state that

X = Zx =
{

0, x, 2x, . . . , (nx − 1)x
}

such that the above elements are pairwise distinct.

Thus, it remains only to show that nx is prime. For this, note that if k, l ∈ N ,
with k 6= 1 and l 6= 1 , such that nx = k l , then k < nx and l < nx. Thus, by
the definition of nx , we have k x 6= 0 and l x 6= 0 . Hence, by (2), we can infer
that X = Z (k x) . Thus, in particular there exists m ∈ Z such that x = m (k x) .
Hence, we can infer that

l x = l
(
m (k x)

)
= m

(
(k l)x

)
= m (nx x ) = m 0 = 0 .

However, this contradicts to our former observation that l x 6= 0 .

4. Semi-inner products on groups

The following generalization of the ordinary semi-inner product [198] was first
introduced in our technical report [207] to generalize a basic theorem of Maksa
and Volkmann [141] . ( See also [22, 23, 24] for some further developments.)

This works well also in a groupoid, and can be easily modified according to
the corresponding definitions of Rubin and Stone [177] , Lumer [135] , Giles [84] ,
Nath [151] , Bognár [20] , Antoine and Grossmann [13] and Drygas [51] .

Definition 4.1. Let X be a group. Then a function P of X 2 to C is called a
semi-inner product on X if for any x, y, z ∈ X we have

(a) P (x, x) ≥ 0 ,

(b) P (y, x) = P (x, y) ,

(c) P (x+ y, z) = P (x, z) + P (y, z) .

Remark 4.2. The above semi-inner product P is called an inner product if

(d) P (x, x) = 0 implies x = 0 for all x ∈ X.

The following example was sugggested by Zoltán Boros, having in mind a basic
theorem of Maksa [138] . He, together with Jens Schwaiger, became interested in



REMARKS AND PROBLEMS 9

semi-inner products on groups at the Conference on Ulam’s Type Stability, Cluj–
Napoca, Romania, 2016.

Example 4.3. If a is an additive function of X to an inner product space H and

P (x, y) = 〈 a (x) , a (y) 〉

for all x, y ∈ X, then P is a semi-inner product on X. Moreover, P is an inner
product if and only if a is injective.

Note that, despite this, P may be a rather curious function even if X = Rn

and H = R . Namely, by Kuczma [119, p. 292] , there exists a discontinuous,
injective additive function of Rn to R .

Moreover, in the n = 1 particular case, this function may also be required to
have some further striking properties by Makai [137] , Kuczma [119, p. 293] and
Baron [17] .

The most basic properties of semi-inner products can be listed in the next

Theorem 4.4. If P is a semi-inner product on X, then for any x, y, z ∈ X and
k ∈ Z we have

(1) P (x+ y, z) = P (y + x, z) ,

(2) P (x, y + z) = P (x, z + y) ,

(3) P (x, y + z) = P (x, y) + P (x, z) ,

(4) P (k x, y ) = k P (x, y) = P (x, k y ) .

Hint. Assertion (4) can be immediately derived from (c) and (3), by using that an
additive function f of one group X to another Y is Z–homogeneous in the sense
that f (k x) = k f (x) for all k ∈ Z and x ∈ X.

Remark 4.5. Note that, in particular, (4) yields

P (0, y) = 0 = P (x, 0 ) and P (−x, y ) = −P (x, y) = P (x, −y )

for all x, y ∈ X.

Remark 4.6. Moreover, note that the real and immaginary parts (first and second
coordinate functions) P1 and P2 of P , defined by

P1(x, y) = 2−1
(
P (x, y) + P (x, y)

)
= 2−1 (P (x, y) + P (y, x) )

and

P2(x, y) = (i 2)−1
(
P (x, y)− P (x, y)

)
= i−1 2−1

(
P (x, y)− P (y, x)

)
for all x, y ∈ X, also have the same bilinearity properties as P .

Furthermore, by properties (a) and (b), for any x, y ∈ X we have

(1) P1 (x, x) = P (x, x) and P2(x, x) = 0 ,

(2) P1 (y, x) = P1 (x, y) and P2 (y, x) = −P2 (x, y) .

Thus, in particular P1 is also a semi-inner product on X. However, because of
its skew-symmetry, P2 cannot be a semi-inner product on X whenever P2 6= 0 .
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Remark 4.7. Conversely, one can also easily see that if P1 is a real-valued semi-
inner product on X and P2 is a nonzero, skew-symmetric, biadditive function of
X 2 to R , then P = (P1 , P2) = P1 + i P2 is a already complex-valued semi-inner
product on X.

Because of property (a) in Definition 4.1, we may naturally introduce

Definition 4.8. If P is a semi-inner product on the group X, then for any x ∈ X
we define

p (x) =
√
P (x, x) .

( Whenever property (a) is not supposed to hold, we have to use the diagonalization
∆P (x) = P (x, x) of P .)

Example 4.9. If in particular P is as in Example 4.3, then

p (x) =
√
〈 a (x), a (x)〉 = ‖ a (x) ‖

for all x ∈ X.

Concerning the function p , we can easily prove the following

Theorem 4.10. If P is a semi-inner product on X, then for any x, y ∈ X and
k ∈ Z , we have

(1) p (x) ≥ 0 ,

(2) p ( k x ) = | k | p (x) ,

(3) p (x+ y) = p (y + x) ,

(4) p
(
k (x+ y)

)
= p ( k x+ k y) ,

(5) p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ,

(6) p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y) .

Hint. To prove (5) and (6), note that by the Definition 4.8 and Remark 4.6 we have

p (x) =
√
P1(x, x)

and

p (x+ y)2 = P1(x+ y, x+ y ) = P1 (x+ y, x) + P1 (x+ y, y )

= P1 (x, x) + P1 (y, x) + P1 (x, y) + P1 (y, y) = p (x)2 + 2P1(x, y) + p (y)2.

Hence, by the symmetry of P1 and the commutativity of the addition in R , it is
clear that (3) is also true.

Remark 4.11. Note that, in particular, (2) yields

p (0) = 0 and p (−x) = p (x)

for all x ∈ X.

Remark 4.12. Moreover, to feel the importance of (4), note that for any x, y ∈ X ,
we have 2 (x+ y ) = 2x+ 2 y if and only if y + x = x+ y .

Therefore, if x and y do not commute, then 2 (x + y ) 6= 2x + 2 y . However,
by (4), we still have p

(
2 (x+ y)

)
= p ( 2x+ 2 y) .
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Remark 4.13. In addition to Theorem 4.10, we can also note that P is an inner
product on X if and only if p (x) = 0 implies x = 0 for all x ∈ X.

Now, by using Theorems 4.10 and 4.4, we can also easily establish the following

Theorem 4.14. If P is a semi-inner product on X, then for any x, y ∈ X we
have

(1) p (x− y)2 = p (x+ y)2 − 4P1(x, y) ,

(2) p (x− y)2 = 2 p (x)2 + 2 p (y)2 − p (x+ y )2 .

Moreover, as an immediate consequence of Theorems 4.14 and 4.10, we can also
state

Theorem 4.15. If P is a semi-inner product on X, then for any x, y ∈ X we
have

(1) P1(x, y) = 4−1
(
p (x+ y)2 − p (x− y)2

)
,

(2) P1(x, y) = 2−1
(
p (x+ y)2 − p (x)2 − p (y)2

)
.

Remark 4.16. Unfortunately, now similar polar formulas for P2(x, y) cannot be
proved. Therefore, P can be recovered from p only in the real-valued case.

5. Further properties of the induced generalized seminorm

In [207] , the author claimed that, in a group, even a weaker form of Schwarz
inequality cannot be proved. Therefore, he asked several mathematicians in Debre-
cen and Cluj-Napoca to construct an example.

However, in contrast to this request, Zoltán Boros has proved that a real-valued
Schwarz inequality is still true [21] . Actually, it is somewhat more than is sufficient
to prove the desired subadditivity of the function p .

At the Conference, a quite similar argument has been used in the talk [77] of
Roman Ger without mentioning [22] and an improved and enlarged version of
[207] , which had been sent to him before the conference.

In the talk, with reference to [2] , he noticed that if f is a function of R to R
such that f 2 is quadratic, then there exist a unique symmetric, biadditive function
A of R2 to R such that f (x)2 = A (x, x) for all x ∈ X. Moreover, he proved,
in a direct way, that if f is nonnegative, then f is subadditive.

Furthermore, with reference to [193] , he noted that here the domain of f may
be an arbitrary abelian group. Later, in a remark to the talk [21] of Z. Boros,
he remarked that this abelian group may be replaced by a G–group introduced by
Roman Badora in [ Arch. Math. (Basel) 86 (2006), 517–528 ] .

Mentime, we have observed that a generalization of Schwarz inequality on groups
was already proved by Kurepa [122, 127] . Moreover, we have observed that one
half of the following Schwarz inequality can also be proved on groupoids [23, 24] .
And Schwarz inequality has actually to be replaced by an equality [208] .

Theorem 5.1. If P is a semi-inner product on X, then any x, y ∈ X, we have

|P1(x, y) | ≤ p (x) p (y) .
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Proof. By using Theorems 4.10 and 4.4, for any n,m ∈ N , we get

p (nx+ my )2 = n2 p (x)2 + m2 p (y)2 + 2nmP1(x, y) ,

and thus

−2P1(x, y) ≤ (n/m) p (x)2 + (m/n) p (y)2 .

Therefore, we actually have

−2P1(x, y) ≤ r p (x)2 + r−1 p (y)2

for all r ∈ Q with r > 0 , and thus also for all r ∈ R with r > 0 , by the sequential
density of Q in R and the sequential continuity of the operations in R .

Now, by defining

f (r) = r p (x)2 + r−1 p (y)2

for all r > 0 , we can state that

−2P1(x, y) ≤ inf
r>0

f (r) .

Hence, by showing that

inf
r>0

f (r) = 2 p (x) p (y) if p (x) 6= 0 and inf
r>0

f (r) = 0 if p (x) = 0 ,

we can infer that −P1(x, y) ≤ p (x) p (y) , and thus

P1(x, y) = −P1(−x, y) ≤ p (−x) p (y) = p (x) p (y) .

Therefore, by the definition of the absolute value, the required inequality is also
true.

( A very tricky, but instructive proof of Schwarz’s inequality in vector spaces
was given by von Neumann in [152]. However, suprisingly enough, this proof has
not been mentioned in the subsequent works. The separability axiom C of von
Neumann was considered to be superfluous by F. Riesz and H. Löwig in 1930 and
1934, respectively.)

Now, by using Theorems 5.1 and 4.10, we can also prove the following

Theorem 5.2. If P is a semi-inner product on X, then any x, y ∈ X, we have

(1) p (x+ y) ≤ p (x) + p (y) , (2) | p (x)− p (y) | ≤ p (x− y) .

Proof. By Theorems 4.10 and 5.1, it is clear that

p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ≤ p (x+ y) p (x) + p (x+ y) p (y) .

Therefore, by the nonnegativity of p , inequality (1) is also true. Now, inequality
(2) can be derived from (1) on the usual way.

Remark 5.3. Theorems 4.10 and 5.2 already show that the function p is actually
a seminorm on X.

Moreover, from Remark 4.12, we can see that p is a norm on X if and only if
P is an inner product on X.

Assertions (5) and (6) of Theorem 4.10 can be naturally extended to all finite
and certain infinite families of elements of X. However, in the sequel, we shall only
need the following particular case of a result of [22] .
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Theorem 5.4. If P is a semi-inner product on X, then for any x, y, z ∈ X we
have

(1) p (x+ y + z )2 = P1(x+ y + z, x ) + P1(x+ y + z, y ) + P1(x+ y + z, z ),

(2) p (x+y+z )2 = p (x)2+p (y)2+p (z)2+2P1(x, y)+2P1(x, z)+2P1(y, z),

(3) p (x+y+z )2 = p (x+y)2+ p (x+z)2+ p (y+z)2− p (x)2− p (y)2− p (z)2 .

Proof. To prove (3), note that by Theorem 4.10 we have

p (x+ y + z )2 = p (x+ y)2 + p (z)2 + 2P1(x+ y, z )

= p (x)2 + p (y)2 + 2P1(x, y) + p (z)2 + 2P1(x, z) + 2P1(y, z)

= p (x)2 + p (y)2 + p (z)2 + 2P1(x, y) + 2P1(x, z) + 2P1(y, z)

= p (x)2 + p (y)2 + p (z)2 + p (x+ y)2 − p (x)2 − p (y)2

+ p (x+ z)2 − p (x)2 − p (z)2 + p (y + z)2 − p (y)2 − p (z)2

= p (x+ y)2 + p (x+ z)2 + p (y + z)2 − p (x)2 − p (y)2 − p (z)2 .

Remark 5.5. The above parallelepiped law (3) played a similar role in characteri-
zation of inner product spaces as the parallelogram identity established in assertion
(2) of Theorem 4.14.

Their importance in this context was first recognized by Fréchet [71] and Jordan
and von Neumann [101] .

Remark 5.6. If f is a function of one group X to another Y , then for any
x, y, z ∈ X, it is customary to define the first and second order Cauchy differences(

C1f
)
(x, y) = f (x+ y)− f (x)− f (y)

and (
C2f

)
(x, y, z ) =

(
C1f )(x+ y, z)−

(
C1f

)
(x, z)−

(
C1f

)
( y, z) .

Hence, it can be easily seen that(
C2f

)
(x, y, z ) = f (x+ y + z)− f (x+ y)− f (z)

−
(
f (x+ z)− f (x)− f (z)

)
−
(
f (y + z)− f (y)− f (z))

= f (x+y+z)−f (x+y)−f (z)+f (z)+f (x)−f (x+z)+f (z)+f (y)−f (y+z)

= f (x+ y + z)− f (x+ y) + f (x)− f (x+ z) + f (z) + f (y)− f (y + z) .

Thus, in particular the parallelepiped law (3) can be briefly reformulated by
stating that

(
C2p2)(x, y, z) = 0 for all x, y, z ∈ X .

Problem 5.7. In addition to Theorem 5.1 and [23, Example 5.6] , it would be of
some interest to construct a groupoid (or rather a commutative monoid) X and a
semi-inner product P on X such that the inequality P1(x, y) ≤ p (x) p (y) could
fail for some x, y ∈ X.

Namely, by [23, Theorem 5.2] , the inequality −P1(x, y) ≤ p (x) p (y) is always
true.
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6. Two basic properties of the parallelepiped equation

The equivalence of the parallelogram identity and the parallelepiped law for a
norm on a vector space has been proved by Marinescu, Monea, Opincariu and Strore
in [145] .

Now, by using similar arguments, we shall show that under some natural
assumptions the parallelepiped equation

(1) f (x+ y + z ) = f (x+ y) + f (x+ z) + f (y + z)− f (x)− f (y)− f (z) ,

is equivalent either to the quadratic equation

(2) f (x+ y) + f (x− y) = 2 f (x) + 2 f (y)

or to the Cauchy equation

(3) f (x+ y) = f (x) + f (y) .

Theorem 6.1. If f is an even function of an arbitrary group X to a commutative
one Y such that equation (1) holds for all x, y, z ∈ X, then equation (2) also holds
for all x, y ∈ X.

Proof. By taking x = y = z = 0 in equation (1), we can see that

f (0) = 3 f (0) + 3 (−f (0)) = 3 f (0)− 3 f (0) = 0 .

Now, by writing −y in place of z in equation (1), and using f (0) = 0 and
f (−y) = f (y) , we can also see that

f (x) = f (x+ y) + f (x− y) + f (0)− f (x)− f (y)− f (−y)

= f (x+ y) + f (x− y)− f (x)− 2 f (y) ,

and thus

f (x) + 2 f (y) + f (x) = f (x+ y) + f (x− y) .

for all x, y ∈ X. Hence, by the commutativity of Y , it is clear that equation (2)
also holds for all x, y ∈ X.

Remark 6.2. The substitution z = −y is attributed to Jordan and von Neumann
[101] by Istrǎtescu [97, p. 110] and others.

However, they seemed to stress only that Fréchet’s criterium on at most three-
dimensional subspaces can be reduced to that on at most two-dimensional ones.

In the following counterpart of Theorem 6.1, we shall need the famous Kannap-
pann condition [193, p. 315] that

(4) f (x+ z + y ) = f (x+ y + z )

for all x, y, z ∈ X.

Theorem 6.3. If f is an odd, 2–homogeneous function of an arbitrary group X
to a commutative, 2–cancellable one Y such that equations (1) and (4) hold for
all x, y, z ∈ X, then equation (3) also holds for any x, y ∈ X.

Proof. By the first part of the proof of Theorem 6.1, it is clear that we now have

2 f (x) = f (x+ y) + f (x− y)

for all x, y ∈ X.
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Hence, by writing x + y in place of x and x − y in place of y , and using
equation (4) and the 2–homogeneity of f , we can see that

2 f (x+ y) = f (x+ y + x− y ) + f
(
x+ y − (x− y)

)
= f (x+ y + x− y ) + f (x+ y + y − x) = f (x− y + y + x ) + f (x− x+ y + y)

= f (2x ) + f (2 y) = 2 f (x) + 2 f (y)

for all x, y ∈ X. Therefore, the function 2 f is additive.

Now, since Y is commutative and Y is 2–cancellable, it is clear that

2 f (x+ y) = 2
(
f (x) + f (y)

)
,

and thus equation (3) also holds for all x, y ∈ X.

Remark 6.4. Conversely, we can easily note that if f is a function of an arbitrary
group X to a commutative one Y such that equation (3) holds for all x, y ∈ X,
then equation (1) also holds for all x, y, z ∈ X.

However, to prove a certain converse to Theorem 6.1, we shall need a rather
complicated calculation.

Theorem 6.5. If f is an even function of an arbitrary group X to a 2–cancellable,
commutative one Y such that equations (2) and (4) hold for any x, y, z ∈ X, then
equation (1) also holds for all x, y, z ∈ X .

Proof. Now, in addition to

2 f (x) + 2 f (y) = f (x+ y) + f (x− y) ,

we also have

2 f (x+ y + z ) + 2 f (z) = 2 f (x+ y + z ) + 2 f (−z)

= f (x+ y + z − z) + f (x+ y + z + z ) = f (x+ y) + f (x+ y + 2 z )

for all x, y, z ∈ X.

Moreover, we also have

2 f (x+ z) + 2 f (y + z) = f (x+ z + y + z ) + f
(
x+ z − (y + z)

)
= f (x+ y + z + z ) + f (x+ z − z − y ) = f (x+ y + 2 z ) + f (x− y) ,

and thus
f (x+ y + 2 z ) + f (x− y) = 2 f (x+ z) + 2 f (y + z)

for all x, y, z ∈ X.

Now, by adding the corresponding three equalities, we can state that

2 f (x) + 2 f (y) + 2 f (x+ y + z ) + 2 f (z) + f (x+ y + 2 z ) + f (x− y)

= f (x+ y) + f (x− y) + f (x+ y) + f (x+ y+ 2 z ) + 2 f (x+ z) + 2 f (y+ z) ,

and thus

2
(
f (x) + f (y) + f (x+ y + z ) + f (z)

)
= 2

(
f (x+ y) + f (x+ z) + f (y + z)

)
for all x, y, z ∈ X.

Hence, we can already infer that

f (x) + f (y) + f (x+ y + z ) + f (z) = f (x+ y) + f (x+ z) + f (y + z) ,

and thus equation (1) also holds for all x, y, z ∈ X.
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Remark 6.6. Note that in the above theorems f may for instance be a suitable
function of X to C , or more specially p2 for a suitable function p of X to R .

However, it is now more important to note that if p is a function of a group X
to R such that for any x, y, z ∈ Y we have

(1) p (x+ y)2 = p (y + x)2 ,

(2) p (x+y+z )2 = p (x+y)2 + p (x+z)2 + p (y+z)2−p (x)2−p (y)2−p (z)2 ,

then by [193, Proposition 13.25] of Stetkaer there exist a unique additive function
a of X to R and a unique symmetric, biadditive function A of X 2 to R such
that

p (x)2 = a (x) + A (x, x)

for all x ∈ X.

Hence, if in addition p is even, we can infer that

a (x) + A (x, x) = p (x)2 = p (−x)2 = a (−x) + A (−x, −x) = −a (x) + A (x, x) ,

and thus a (x) = 0 for all x ∈ X. Therefore, we have p (x)2 = A (x, x) for all

x ∈ X. Hence, if in addition p is nonnegative, we can infer that p (x) =
√
A (x, x )

for all x ∈ X.

7. Parapreseminorms should also be investigated

The following definition was first introduced by the present author, in an im-
proved and enlarged version of [207] , to prove a natural generalization of a basic
theorem of Maksa and Volkmann [141] on additive functions.

Definition 7.1. Let X be a group. Then, a function p of X to R is called a
parapreseminorm on X if for any x, y, z ∈ X we have

(a) 0 ≤ p (x) ,

(b) p (−x ) ≤ p (x) ,

(c) p (y + x) ≤ p (x+ y) ,

(d) p (x+y+z )2 ≤ p (x+y)2 + p (x+z)2 + p (y+z)2− p (x)2− p (y)2− p (z)2 .

Remark 7.2. The above parapreseminorm p is called a paraseminorm if

(e) p (nx) = n p (x) for all n ∈ N and x ∈ X.

Moreover, a paraseminorm (parapreseminorm) p on X is called a paranorm
(paraprenorm) if

(f) p (x) = 0 implies x = 0 for all x ∈ X.

This definition differs from that of Wilansky [225, p. 15] . However, it is in
accordance with the definitions introduced in Section 3.

By our former results on seminorms derived from semi-inner products, we can
at once state

Theorem 7.3. If P is a semi-inner product on X and

p (x) =
√
P (x, x)
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for all x ∈ X , then p is a paraseminorm on X.

Remark 7.4. Moreover, we can also state that p is paranorm on X if and only
if P is an inner product on X.

Now, by using Definition 7.1, we can also easily prove the following

Theorem 7.5. If p is a parapreseminorm on X, then for any x, y ∈ X we have

(1) p (0) = 0 ,

(2) p (x) = p (−x) ,

(3) 2 p (x) ≤ p (2x) ,

(4) p (x+ y) = p (y + x) ,

(5) 2 p (x)2 + 2 p2 (y) ≤ p (x+ y)2 + p (x− y)2 .

Proof. Assertions (2) and (4) can be immediately derived from properties (b) and
(c), respectively, by writing −x in place of x in (b) and changing the roles x and
y in (c), respectively.

Moreover, by taking z = 0 in (d), we can easily see that (1) also hold. Now,
from (d), by taking z = −y and using (1) and (2), we can also easily see that (5)
is also true. Moreover, from (5), by taking x = y and using (1) and (a), we can
easily see that (3) is also true.

Remark 7.6. If in particular p is paraseminorm on X, then by using the corres-
ponding definitions and assertion (2) of Theorem 7.5 we can also easily see that

(6) p (k x) = | k | p (x) for all k ∈ Z and x ∈ X.

The following example shows that even some very simple norms need not be
paranorms.

Example 7.7. For any x = (x1 , x2) ∈ R2, define

p1(x) = |x1 |+ |x2 | , p2(x) =
√
x2

1 + x2
2 and p∞(x) = max

{
|x1 |, |x2 |

}
.

Then, p2 is a paranorm, but p1 and p∞ are not paranorms on R2.

Since p2 can be derived from an inner product on R2, by Theorem 7.3 and
Remark 7.4, it is clear that p2 is a paranorm on R2.

Moreover, by taking

a = (1, 0) , b = (0, 1) , c = (1, 1) , d = (−1, 1) ,

we can see that

2 p1(c)2 + 2 p1(d)2 = 24, but p1(c+ d)2 + p1(c− d)2 = 23,

and

2 p∞(a)2 + 2 p∞(b)2 = 22, but p∞(a+ b)2 + p∞(a− d)2 = 2 .

Therefore, by the assertion (5) of Theorem 7.5, p1 and p∞ cannot be paranorms
on R2.
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Problem 7.8. At this point, we should also give some natural paranorms which
are not norms.

Moreover, in addition to Theorem 7.5, we should find some further interesting
properties parapreseminorms.

And, we should give some reasonable conditions in order that a preseminorm
(parapreseminorm) could be a parapreseminorm (preseminorm) .

8. Sub-quadratic and super-quadratic functions are usually
quadratic

The following theorem has been proved at the Conference, with the help of Gyula
Maksa and Zoltán Boros, to correct a quick answer of Zsolt Páles to a question of
the present author concerning the talk of Roman Ger.

Theorem 8.1. If f is a super-quadratic function of a group X to R such that

(1) f (2x) ≤ 4 f (x) , (2) f (x+ y + z ) ≤ f (x+ z + y ) ,

for all x, y, z ∈ X, then f is quadratic.

Proof. Since f is super-quadratic, for any x, y ∈ X, we have

2 f (x) + 2 f (y) ≤ f (x+ y) + f (x− y) .

Hence, it is clear that, for any u, v ∈ X, we have

2 f (u+ v) + 2 f (u− v) ≤ f (u+ v + u− v ) + f
(
u+ v − (u− v)

)
.

Moreover, by using assumptions (2) and (1), we can see that

f (u+ v + u− v ) = f
(
u+ (v + u)− v

)
≤ f

(
u− v + (v + u)

)
= f (2u ) ≤ 4 f (u)

and

f
(
u+ v − (u− v)

)
= f (u+ v + v − u )

= f (u+ 2 v − u ) = f (u− u+ 2 v ) = f ( 2v ) ≤ 4 f (v) .

Therefore,
2 f (u+ v) + 2 f (u− v) ≤ 4 f (u) + 4 f (v) ,

and thus
f (u+ v) + f (u− v) ≤ 2 f (u) + 2 f (v)

also holds. This shows that we actually have

f (x+ y) + f (x− y) = 2 f (x) + 2 f (y)

for all x, y ∈ X, and thus f is quadratic.

Remark 8.2. Note that if f is a subquadratic function of a group X to R , then
for any x, y ∈ X we have

f (x+ y) + f (x− y) ≤ 2 f (x) + 2 f (y) .

Hence, by putting y = 0 we can infer that 0 ≤ f(0) . Moreover, by putting x = y
and using 0 ≤ f (0) , we can infer that f (2x) ≤ 4 f (x) .

Therefore, assumption (1) of the theorem follows from the assertion of the
theorem. To see its necessity, Zoltán Boros noticed that if c < 0 , X is a group and
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f(x) = c for all x ∈ X , then f is a super-quadratic, but not quadratic, function
of X to R such that the Kannappann inequality (2) trivially holds for f .

The necessity of condition (2) could certainly be demonstrated only with the
help of a much more difficult example. In this respect, it is noteworthy that,
by Stetkaer [193, Example 13.20 and Lemma B.4] there exists an integer-valued
quadratic function f of a free group X, with three generators, such that the
Kannappann condition does not hold for f .

From Theorem 8.1, by noticing that a function f is subquadratic if −f is super-
quadratic, we can immediately derive the following

Corollary 8.3. If f is a subquadratic function of a group X to R such that

(1) 4 f (x) ≤ f (2x) , (2) f (x+ y + z ) ≤ f (x+ z + y ) ,

for all x, y, z ∈ X, then f is quadratic.

However, it is now more important to note that, as an immediate consequence
of Theorem 7.5 and 8.1, we can also state the following

Theorem 8.4. If p is a parapreseminorm on a group X such that

(1) p (2x) ≤ 2 p (x) , (2) p (x+ y + z ) ≤ p (x+ z + y ) ,

for all x, y, z ∈ X, then the function p2 is quadratic.

Proof. From Theorem 7.5 and assumptions (1) and (2), we can see that

2 p2(x) + 2 p2(y) ≤ p2(x+ y) + p2(x− y)

and

p2(2x) ≤ 4 p2 (x) and p2(x+ y + z ) ≤ p2 (x+ z + y )

for all x, y, z ∈ X. Therefore, by Theorem 8.1, the required assertion is also
true.

Hence, by using an improvement of a part of an argument of Ger [77] , we can
easily derive the following

Corollary 8.5. If p is as in Theorem 8.4, then for any x, y ∈ X, the following
assertions are equivalent :

(1) p (x+ y) ≤ p (x) + p (y) , (2) p (x+ y)2− p (x− y)2 ≤ 4 p (x) p (y) .

Proof. By the nonnegativity of p and Theorem 8.4, it is clear that the following
inequalities are equivalent :

p (x+ y) ≤ p (x) + p (y) ,

p (x+ y)2 ≤
(
p (x) + p (y)

)2
,

p (x+ y)2 ≤ p (x)2 + p (y)2 + 2 p (x) p (y) ,

2 p (x+ y)2 ≤ 2 p (x)2 + 2 p (y)2 + 4 p (x) p (y) ,

2 p (x+ y)2 ≤ p (x+ y)2 + p (x− y)2 + 4 p (x) p (y) ,

p (x+ y)2 − p (x− y)2 ≤ 4 p (x) p (y) .
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Remark 8.6. At the Conference, in connection with the talk of Roman Ger, I
have suggested to consider first functional inequalities instead of the corresponding
equalities, having in mind the various papers on functional inequalities.

However, I could know only from a recent paper of Fechner [62] that even
subquadratic and superquadratic functions have already been intensively studied
by several mathematicians. ( See, for instance, [115, 216, 116, 82, 83] .)

For instance, Kominek and Troczka [115] proved that if ϕ is a subquadratic
function of a real linear space X such that ϕ (k x) = k2 ϕ (x) for some integer
k > 1 and all x ∈ X, then ϕ is a quadratic function.

Remark 8.7. At a future conference, Wlodzimierz Fechner should be asked to hold
a survey talk or a special session on the most important functional inequalities.

9. A generalization of the quadrilateral inequality

To extendend a result of Edmund Hlawka, presented first by Hornich [93, p.
274] , for a function p of a group X to R we shall look for some sufficient conditions
in order that, for some x, y, z ∈ X, the parallelepiped inequality

(5) p (x+y)2 + p (x+z)2 + p (y+z)2− p (x)2− p (y)2− p (z)2 ≤ p (x+y+z )2 ,

could imply the quadrilateral inequality

(6) p (x+ y) + p (x+ z) + p (y + z)− p (x)− p (y)− p (z) ≤ p (x+ y + z ) .

For this, by following an argument of Smiley and Smiley [191] , rather than that
of Hlawka [93] and Djoković [42] , we shall prove the following

Theorem 9.1. If p is a preseminorm on a group X, then for any x, y, z ∈ X
satisfying the Kannappann inequality

(7) p (x+ z + y ) ≤ p (x+ y + z ) ,

the parallelepiped inequality (5) implies the quadrilateral inequality (6).

Proof. By using the notations

S1 = p (x)+p (y)+p (z), S2 = p (x+y)+p (x+z)+p (y+z), S3 = p (x+y+z ),

we have to prove that

S2 − S1 ≤ S3 , or equivalently S1 − S3 ≤ 2S1 − S2 .

For this, we can note that

S2
1−S2

3 = p (x)2+ p (y)2+p (z)2+2 p (x) p(y)+2 p (x) p(z)+2 p (y) p(z)−p (x+y+z)2.

Moreover, if the parallelepiped inequality (5) holds, then we have

−p (x+ y + z)2 ≤ p (x)2 + p (y)2 + p (z)2 − p (x+ y)2 − p (x+ z)2 − p (y + z)2 .

Therefore,

S2
1 − S2

3 ≤ 2 p (x)2 + 2 p (y)2 + 2 p (z)2

+ 2 p (x) p(y) + 2 p (x) p(z) + 2 p (y) p(z)− p (x+ y)2 − p (x+ z)2 − p (y + z)2 .

On the other hand, by defining

C (x, y) = p (x) + p (y)− p (x+ y) and D (x, y) = p (x) + p (y) + p (x+ y) ,
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we can see that

C (x, y)D (x, y) =
(
p (x) + p (y)

)2 − p (x+ y)2

= p (x)2 + p (y)2 + 2 p (x) p (y)− p (x+ y)2 .

Therefore,

C (x, y)D (x, y) + C (x, z)D (x, z) + C (y, z)D (y, z)

= p (x)2 + p (y)2 + 2 p (x) p (y)− p (x+ y)2

+ p (x)2 + p (z)2 + 2 p (x) p (z)− p (x+ z)2

+ p (y)2 + p (z)2 + 2 p (y) p (x)− p (y + z)2

= 2 p (x)2 + 2 p (y)2 + 2 p (z)2

+ 2 p (x) p(y) + 2 p (x) p(z) + 2 p (y) p(z)− p (x+ y)2 − p (x+ z)2 − p (y + z)2

Hence, we can see that

S2
1 − S2

3 ≤ C (x, y)D (x, y) + C (x, z)D (x, z) + C (y, z)D (y, z) .

Moreover, by noticing that

D (x, y) = p (x)+p (y)+p (x+y) = S1+p (x+y)−p (z) ≤ S1+p (x+y+z ) = S1+S3 ,

D (y, z) = p (y)+p (z)+p (y+z) = S1−p (x)+p (y+z) ≤ S1+p (x+y+z ) = S1+S3 ,

D (x, z) = p (x) + p (z) + p (x+ z) = S1 + p (x+ z)− p (y) ≤ S1 + p (x+ z+ y )

≤ S1 + p (x+ y + z ) = S1 + S3 ,

and C (x, y) , C (x, z) and C (y, z) are nonnegative, we can see that

(S1−S3) (S1+S3) = S2
1−S2

3 ≤ C (x, y) (S1+S3)+C (x, z) (S1+S3)+C (y, z) (S1+S3)

=
(
C (x, y) + C (x, z) + C (y, z)

)
= ( 2S1 − S2) (S1 + S3) .

Hence, since S1 + S3 ≥ 0 , and moreover S1 + S3 = 0 implies S1 = 0 and S3 = 0 ,
we can already infer that

S1 − S3 ≤ 2S1 − S2 , and thus S2 − S1 ≤ S3 .

Therefore, the quadrilateral inequality (6) also holds.

From this theorem, by using Theorems 4.10, 5.1 and 5.3, we can immediately
derive

Corollary 9.2. If P is a semi-inner product on a group X and

p (x) =
√
P (x, x)

for all x ∈ X, then the quadrilateral inequality (6) holds for all x, y, z ∈ X.

Remark 9.3. If p is only a preseminorm on a group X satisfying the Kannappann
inequality (7), then by using Theorem 3.7 we can only state that

p (x+ y)− p (z) ≤ p (x+ y + z ) ,

−p (x) + p (y + z) ≤ p (x+ y + z ) ,

p (x+ z)− p (y) ≤ p (x+ z + y ) ≤ p (x+ y + z ) ,
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and thus

p (x+ y) + p (x+ z) + p (y + z)− p (x)− p (y)− p (z) ≤ 3 p (x+ y + z ) .

Remark 9.4. In [191], Smiley and Smiley noticed that if p is a function of a
commutative group X to R such that the quadrilateral inequality (2) holds for all
x, y, z ∈ X, then by putting (2x , −x+ y , −x+ y) in place of (x, y, z) in (6)
we get

2 p (x+ y) + p
(

2 (−x+ y)
)
− p (2x)− 2 p (−x+ y) ≤ p (2 y)

for all x, y ∈ X. Hence, if in addition p is 2-homogeneous, we can infer that

p (x+ y) ≤ p (x) + p (y)

for all x, y ∈ X. That is, p is subbadditive.

Remark 9.5. Kelly, Smiley and Smiley [109] and Sudbery [194] proved that if
p is a norm on a vector space X, then for any three linearly dependent elements
x, y and z of X the quadrilateral inequality (6) holds.

Therefore, to provide a counterexample to the quadrilateral inequality (6), we
have to start with at least a three dimensional normed spaces whose norm cannot
be derived from an inner product.

The following example of Fechner [61] shows that the supremum norm p on Rn ,
with n > 2 , fails to satisfy the quadrilateral inequality (6) for all x, y, z ∈ Rn.

Example 9.6. For any x = (x1 , x2 , x3) ∈ R3, define

p(x) = max
{
|x1 | , |x2 | , |x3 |

}
.

Then, p is a norm on R3.

Moreover, by taking

x = (1, 1,−1) , x = (1, −1, 1) , x = (−1, 1, 1) ,

we can see that

x+ y = (2, 0, 0) , x+ z = (0, 2, 0) , y+ z = (0, 0, 2) , x+ y+ z = (1, 1, 1) ,

and

p (x)+ p (y)+p (z) = 3 , p (x+y)+p (x+z)+ (y+z) = 6 , p (x+y+z) = 1 .

Therefore,

p (x+ y) + p (x+ z) + p (y + z)− p1 (x)− p (y)− p (z) = 3 6≤ 1 = p (x+ y + z) .

Remark 9.7. Finally, we note that if p is a function of a group X to R and
x, y, z ∈ X such that the parallelepiped inequality (5) holds then by using our
former notations and the identity

a2 + b2 + c2 = ( a+ b+ c)2 − 2 a b− 2a c− 2 b c ,

we can see that

S2
3 ≥ S2

2 − 2 p (x+ y) p (x+ z)− 2 p (x+ y) p (y + z)− 2 p (x+ z) p (y + z)

− S2
1 + 2 p (x) p (y) + 2 p (x) p (z) + 2 p (y) p (z) .
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Moreover, if in particular p is a preseminorm on X , then we can also see that

− 2 p (x+ y) p (x+ z) ≥ −2
(
p (x) + p (y)

) (
p (x) + p (z)

)
= −2 p (x)2 − 2 p (x) p (y)− 2 p (x) p (z)− 2 p (y) p (z) ,

− 2 p (x+ y) p (y + z) ≥ −2
(
p (x) + p (y)

) (
p (y) + p (z)

)
= −2 p (y)2 − 2 p (x) p (y)− 2 p (x) p (z)− 2 p (y) p (z) ,

− 2 p (x+ z) p (y + z) ≥ −2
(
p (x) + p (z)

) (
p (y) + p (z)

)
= −2 p (z)2 − 2 p (x) p (y)− 2 p (x) p (z)− 2 p (y) p (z) .

Therefore,

S2
3 ≥ S2

2 − S2
1 − 2 p (x)2 − 2 p (y)2 − 2 p (z)2

− 4 p (x) p (y)− 4 p (x) p (z)− 4 p (y) p (z)

= S2
2 − S2

1 − 2S2
1 = S2

2 − 3S2
1 ,

and thus
S2

3 − S2
1 ≥ S2

2 − ( 2S1)2 .

Hence, we can infer that

(S1 − S3) (S1 + S3) = S2
1 − S2

3 ≤ ( 2S1)2 − S2
2 = ( 2S1 − S2) ( 2S1 + S2) .

However, this rough estimation cannot be used to derive the required inequality
S1 − S3 ≤ 2S1 − S2 , i. e., S2 − S1 ≤ S3 . Moreover, we cannot prove of a
counterpart of Theorem 9.1 for parapreseminorms.

10. Two characterizations of additive functions

By using paraseminorms and inner products on groups, we can quite easily prove
a natural generalization of a basic theorem of Maksa and Volkmann [141] .

This theorem greatly improves several former results on norm Cauchy equations
and inequalities. ( See [94, 219, 118, 68, 128] .) However, for instance, it is not cited
in [130] .

Theorem 10.1. If f is a function of one group X to another Y , q is a para-
prenorm on Y , then the following assertions are equivalent :

(1) f is additive ,

(2) q
(
f(x) + f (y)

)
= q

(
f (x+ y)

)
for all x, y ∈ X ,

(3) q
(
f(x) + f (y)

)
≤ q

(
f (x+ y)

)
for all x, y ∈ X .

Hint. From (3), by using (3) in Theorem 7.5 and a quite similar argument as in
[141] , it is easy to see that f(0) = 0 and f is odd.

Hence, by using (2) in Theorem 7.5, we can also easily see that

q
(
f (−x)

)
= q

(
−f (x)

)
= q

(
f (x)

)
,

and thus
q
(
f (−y − x)

)
= q

(
f
(
−(x+ y)

))
= q

(
f (x+ y)

)
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for all x, y ∈ X.

Now, by using the above facts, (c) in Definition 7.1, (4) in Theorem 7.5 and
assertion (3), we can also see that

q
(
f (x+ y)− f (y)− f (x)

)2
= q

(
f (x+ y) + f (−y) + f (−x)

)2

≤ q
(
f (x+ y) + f (−y)

)2
+ q

(
f (x+ y) + f (−x)

)2
+ q

(
f (−y) + f (−x)

)2

− q
(
f (x+ y)

)2 − q
(
f (−y)

)2 − q
(
f (−x)

)2
=

q
(
f (x+ y) + f (−y)

)2
+ q

(
f (−x) + f (x+ y)

)2
+ q

(
f (−y) + f (−x)

)2

− q
(
f (x+ y)

)2 − q
(
f (y)

)2 − q
(
f (x)

)2 ≤

q
(
f (x)

)2
+ q

(
f (y)

)2
+ q

(
f (x+ y)

)2

− q
(
f (x+ y)

)2 − q
(
f (y)

)2 − q
(
f (x)

)2
= 0

for all x, y ∈ X. Therefore, we necessarily have

f (x+ y)− f (y)− f (x) = 0 ,

for all x, y ∈ X, and thus (1) also holds.

Now, in addition to this theorem, we can also easily prove the following

Theorem 10.2. If f is a function of one group X to another Y , Q is an inner
product on Y and

q (y) =
√
Q(y, y)

for all y ∈ Y , then the following assertions are equivalent :

(1) f is additive ,

(2) 2 Q1

(
f (x), f (y)

)
= q

(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2
for all

x, y ∈ X ,

(3) 2 Q1

(
f (x), f (y)

)
≤ q

(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2
for all

x, y ∈ X .

Hint. If (3) holds, then by Theorem 4.9 and assertion (3) we have

q
(
f(x) + f (y)

)2
= q

(
f (x)

)2
+ q

(
f (y)

)2
+ 2 Q1

(
f (x), f (y)

)
≤

q
(
f (x)

)2
+ q
(
f (y)

)2
+ q

(
f (x+ y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2
= q

(
f (x+ y)

)2

for all x, y ∈ X. Therefore, by the nonnegativity of q , we also have

q
(
f(x) + f (y)

)
≤ q

(
f (x+ y)

)
for all x, y ∈ X. Hence, by Theorems 7.3 and 10.1, we can see that (1) also holds.

Remark 10.3. Note that the above proofs do not require any particular trick.
Therefore, they are more simple than the one given by Maksa and Volkmann [141]
which was actually based on assertion (1) of Theorem 5.4.

In [207] , we have used assertion (2) of Theorem 5.4 to prove the implication
(3) =⇒ (1) of Theorem 9.2. However, assertion (3) of Theorem 5.4 seems to be a
more convenient mean than (1) and (2). Namely, in the proof of the implication
(3) =⇒ (1) of Theorem 10.1, we have only used some properties of q and q2 .
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Remark 10.4. Moreover, assertion (3) of Theorem 5.4, and its possible gene-
ralizations [22] , can certainly be also applied to some other important functional
inequalities. A first such one is the quadratic functional equality studied by Gillányi
[80] and Rätz [171] . ( See also Fechner [60] for some further developments.)

However, note that if for instance f is an even, subadditive function of group
X to R , then f is nonnegative, and thus

| f (x+ y) | = f (x+ y) ≤ f (x) + f (y) = | f (x) + f (y) |

for all x, y ∈ R .

Moreover, if f is an odd isometry of an arbitrary preseminormed group X to a
2–cancellable one Y , then f(0) = 0 , and thus

‖ f (x+ y) ‖ = ‖ f (x+ y)− f(0) ‖ = ‖x+ y − 0 ‖
= ‖x− (−y) ‖ = ‖ f(x)− f (−y) ‖ = ‖ f (x) + f (y) ‖

for all x, y ∈ X.

According to the easier part of a famous characterization theorem of Ger [76] ,
the composition of an odd isometry and an additive function is also a solution of
the corresponding equality.

Therefore, to prove certain counterparts of Theorems 10.1 and 10.2 some
additional requirements will be needed. For some ideas in this respect, see [128,
Theorem 2] which should also be proved with the help of assertion (3) of Theorem
5.4.

Remark 10.5. Finally, to justify the appropriateness of our present treatment, we
also note that an application of Theorem 10.1, to the proof of the left-invariance of
some lower left-invariant generalized metrics, will be given in [209] .

11. Problems in connection with the Páles equation

In [157] and [140] , Páles and Maksa investigated a multiplicative form of the
equation

F (x, y) +
1

n

n∑
i=1

F
(
x+ ϕi(y) , z

)
=

1

n

n∑
i=1

F
(
x , y + ϕi(z)

)
+ F ( y, z) ,

where F is a function of a product semigroup X 2 to C or a normed space Y ,
and the functions ϕi are pairwise distinct additive functions of X to itself, which
form a group with respect to composition.

First of all, they have proved that, for an arbitrary function f of X to Y , the
difference function Ff , defined by

Ff (x, y) = f (x) + f (y) − 1

n

n∑
i=1

f
(
x+ ϕi (y)

)
for all x, y ∈ X , is a solution of the above functional equation.

The importance of these considerations lie mainly in the fact that in the n = 1
and ϕ1(x) = x particular case we get the cocycle equation

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z)
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and the Cauchy difference

Ff (x, y) = f (x) + f (y)− f (x+ y) .

While, if X is a commutative group, then in the n = 2 , ϕ1(x) = x and
ϕ2(x) = −x particular case we get the Székelyhidi equation [210]

F (x, y)+ 2−1
(
F (x+y, z)+F (x−y, z)

)
= 2−1

(
F (x, y+z)+F (x, y−z)

)
+F (y, z) .

and the quadratic difference

Ff (x, y) = f (x) + f(y)− 2−1
(
f (x+ y)− f (x− y) .

In the light of the above observations, it is an interesting problem that:

Problem 11.1. How can the several results on the cocycle and Székelyhidi equations
be extended to the Páles equation?

Páles and Maksa have proved four such results. However, I am mainly interested
in some more elementary ones.

In particular, I do not know that:

Problem 11.2. How my former two generalizations of the cocycle equation [203]

F (x, y) + F (u, y + v) + F (x+ y, u+ v)

= F (x, u) + F (y, u+ v) + F (x+ u, y + v) ,

and

F (x, y) + F (x− u, u) + F (y − v, u) + F (y − v, v)

= F (u, v) + F (u, y − v) + F (x− u, y − v) + F (x+ y − u− v, u+ v)

can be extended to the Páles equation?

After solving the latter problem:

Problem 11.3. It would also be of some interest to extend the results of our former
papers [204] and [205] to the corresponding generalizations of the Páles equation.

Finally, we remark that cocycle equation can also be written in the difference
forms

F (x+ y, z )− F (y, z) = F (x, y + z)− F (x, y)

and

F (x+ y, z )− F (x, z)− F (y, z) = F (x, y + z)− F (x, y)− F (x, z)

which may also lead to some generalizations.

Collecting and reading most of the items of the subsequent extensive References
have required a lot more efforts and energy than finding out and writing down the
contents of all the former eleven sections. Fortunately, only a very few items have
not been available in our Library and on the Internet. However, papers written in
French or Italian were not readable for me.
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62 (2001), 303-309.
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[134] L. Losonczi, On the stability of Hossú’s functional equation, Results Math. 29 (1996),

305–310.
[135] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math, Soc. 100 (1961), 29–43.

[136] H. A. McLean, The triangle inequality, Amer. Math. Mothly 85 (1978), 105–106.
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[167] J. Röhmel, Eine Characterisierung quadratischer Formen durch eine Functionalglechung,
Aequationes Math. 15 (1977), 163–168.

[168] J. M. Rassias, On approximation of approximately quadratic mappings by quadratic map-
pings, Ann. Math. Sil. 15 (2001), 67–78.

[169] J. Rätz, On isometries of generalized inner product spaces, SIAM J. Appl. Math. 18 (1970),

6–9.
[170] J. Rätz, Additive mappings on inner product spaces, Glasnik Mat. 13 (1978), 63-68.

[171] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation,

Aequationes Math. 66 (2003), 191-200.
[172] P. Ressel, The Hornich–Hlawka inequality and Berstein functions, J. Math. Ineq. 9 (2015),

883–888.

[173] D. Robinson, A Course in the Theory of Groups, Springer, New York, 1982.
[174] J. Roh and I.-S. Chang, Functional inequalities associated with additive mappings, Abst.

Appl. Anal. 2008, Art. ID 136592, 11 pp.
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