
UNIVERSITY OF DEBRECEN

Semi-inner products and their induced seminorms
and semimetrics on groups

Zoltán Boros and Árpád Száz
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SEMI-INNER PRODUCTS AND THEIR INDUCED SEMINORMS

AND SEMIMETRICS ON GROUPS

ZOLTÁN BOROS AND ÁRPÁD SZÁZ

Abstract. By introducing a convenient notion of semi-inner products on

groups, we shall show that some basic results on semi-inner product spaces

can be naturally extended to semi-inner product groups.

The results obtained can, for instance, be used to extend some basic

theorems of Gy. Maksa, P. Volkmann, A. Gilányi, J. Rätz and W. Fechner
on characterizations of additive and quadratic functions by inequalities.

1. Introduction

For a group X, a function P of X 2 to C will be called a semi-inner product
on X if

P (x, x) ≥ 0 , P (x, y) = P (y, x) and P (x+ y, z) = P (x, z) + P (y, z)

for all x, y, z ∈ X. In particular, the semi-inner product P will be called an inner
product if P (x, x) = 0 implies x = 0 for all x ∈ X .

Thus, for instance, if a is an additive function of X to C and

P (x, y) = a (x) a (x)

for all x, y ∈ X, then P is a semi-inner product on X. Moreover, this P is an
inner product if and only if a is injective. Note that, by Kuczma [7, p. 292] , even
an injective additive function of Rn to R may be discontinuous.

If P is a semi-inner product on X, then it can be easily seen that

P (x+ y, z) = P (y + x, z)

for all x, y, z ∈ X. Moreover, P is actually biadditive, and thus

P (k x, y ) = k P (x, y) = P (x, k y )

also holds for all k ∈ Z and x ∈ X.

Thus, the real and imaginary parts, i. e., the first and second coordinate func-
tions P1 and P2 of P inherit most of the above properties of P . In particular,
P1 is also an inner product on X. However, P2 is not symmetric if P2 6= 0 .

If P is a semi-inner product on X, then we define

p (x) =
√
P (x, x) and d (x, y) = p (−x+ y)

for all x, y ∈ X. Thus, it can be shown that p is a seminorm and d is an semimetric
on X having several useful additional properties.
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For instance, we shall show that

(a) |P1(x, y) | ≤ p (x) p (y) ,

(b) p
(
k (x+ y)

)
= p ( k x + k y) ,

(c) p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ,

(d) p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y) ,

and moreover

(A) d (x+ y , y + x ) = 0 ,

(B) d( k x, k y) = | k | d(x, y) ,

(C) d (x+ y , z + w ) ≤ d (x, z) + d (y, w) ,

(D) d (x, y) = d ( z + x , z + y ) = d (x+ z , y + z ) ,

for all x, y, z, w ∈ X and k ∈ Z .

In particular, a semi inner product P on X is an inner product if and only p
is a norm or equivalently d is a metric on X. Therefore, if there exists an inner
product P on X, then by (A) we have x+ y = y + x for all x, y ∈ X, and thus
X is commutative.

If P is a semi-inner product on X and x =
∑n
i=1 xi for some n ∈ N with

n > 1 and xi ∈ X with i = 1, 2, . . . , n , then as some natural generalizations of
(c) and (d) we can also prove that

(1) p (x)2 =

n∑
i=1

P1(x, xi) ,

(2) p (x)2 =

n∑
i=1

p (xi)
2 +

∑
1≤i<j≤n

2P1(xi + xj) ,

(3) p (x)2 =
∑

1≤i<j≤n

p (xi + xj)
2 −

n∑
i=1

(n− 2) p (xi)
2 .

The n = 3 and n = 4 particular cases of the above equalities can, for instance,
be used to prove some natural generalizations of some basic theorems of Maksa
and Volkmann [10] , Gilányi [6] , Rätz [11] and Fechner [4] on characterizations
of additive and quadratic functions by functional inequalities. ( See [14] and [1] .)

2. Semi-inner products

The most important seminorms on vector spaces are derived from semi-inner
products [12] . Therefore, it seems convenient to introduce semi-inner products on
groups too.

Notation 2.1. Suppose that X is a group and P is a function of X 2 to C such
that, for all x, y, z ∈ X, we have

(a) P (x, x) ≥ 0 ,

(b) P (x, y) = P (y, x) ,
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(c) P (x+ y, z) = P (x, z) + P (y, z) .

Remark 2.2. In this case the function P will be called a semi-inner product
on X. This definition differs from that introduced by G. Lumer in 1961 ( see
Dragomir [3, p. 19]).

Moreover, the semi-inner product P will be called an inner product if

(d) P (x, x) = 0 implies x = 0 for all x ∈ X .

Thus, if P is an inner (semi-inner) product on the group X, then the ordered
pair X (P ) = (X, P ) may be called an inner (semi-inner) product group.

Example 2.3. Note that if a is an additive function of X to an inner product
space H and

P (x, y) = 〈 a (x) , a (y) 〉
for all x, y ∈ X, then P is a semi-inner product on X. Moreover, P is an inner
product if and only if a is injective.

However, despite this, P may be a rather curious function even if X = Rn and
H = R . Namely, by Kuczma [7, p. 292] , there exists a discontinuous, injective
additive of Rn to R .

Moreover, in the n = 1 particular case, this function may also be required to
have some further striking properties by Makai [8] , Kuczma [7, p. 293] and Baron
[2] .

The most basic properties of the semi-inner product P can be listed in the next

Theorem 2.4. For all x, y, z ∈ X and k ∈ Z , we have

(1) P (x+ y, z) = P (y + x, z) ,

(2) P (x, y + z) = P (x, y) + P (x, z) ,

(3) P (k x, y ) = k P (x, y) = P (x, k y ) .

Proof. By (c) and the commutativity of the addition in C, it is clear that (1) is
true.

Moreover, by using (b) and (c), and the additivity of complex conjugation, we
can easily see that (2) is also true. Thus, P is actually a biadditve function of X 2

to C .

Hence, by the Z-homogeneity of additive functions of one group to another [16,
Sec. 2.1] , it is clear that (3) is also true.

Remark 2.5. Note that, in particular, (3) yields

P (0, y) = 0 = P (x, 0 ) and P (−x, y ) = −P (x, y) = P (x, −y )

for all x, y ∈ X.

Remark 2.6. Moreover, the first and second coordinate functions P1 and P2 of
P also have the same commutativity and bilinearity properties as P .

Furthermore, by properties (a) and (b), for any x, y ∈ X we have

(1) P1 (x, x) = P (x, x) ≥ 0 and P2(x, x) = 0 ,

(2) P1 (y, x) = P1 (x, y) and P2 (y, x) = −P2 (x, y) .
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Thus, in particular P1 is also a semi-inner product on X. However, because of
its skew-symmetry, P2 cannot be a semi-inner product on X whenever P2 6= 0 .

3. The induced seminorms

Definition 3.1. For all x ∈ X, we define

p (x) =
√
P (x, x) .

Example 3.2. Note that if in particular P is as in Example 2.3, then

p (x) = ‖ a (x) ‖
for all x ∈ X.

The most immediate properties of the function p can be listed in the following

Theorem 3.3. For all x, y ∈ X and k ∈ Z , we have

(1) p (x) ≥ 0 ,

(2) p ( k x ) = | k | p (x) ,

(3) p (x+ y) = p (y + x) ,

(4) p
(
k (x+ y)

)
= p ( k x+ k y) ,

(5) p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ,

(6) p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y) .

Proof. To prove (5) and (6), note that by the Definition 3.1 and Remark 2.6 we
have

p (x) =
√
P1(x, x)

and

p (x+ y)2 = P1(x+ y, x+ y ) = P1 (x+ y, x) + P1 (x+ y, y )

= P1 (x, x) + P1 (y, x) + P1 (x, y) + P1 (y, y) = p (x)2 + 2P1(x, y) + p (y)2.

Hence, by the symmetry of P1 and the commutativity of the addition in R , it is
clear that (3) is also true.

Moreover, by using Theorems 3.3 and 2.4, we can see that

p
(
k (x+ y)

)2
= k2 p (x+ y)2 = k2 p (x)2 + k2 p (y)2 + 2 k2 P1(x, y)

and

p ( k x+ k y)2 = p (k x)2 + p (k x)2 + 2P1(k x, k y)

= k2 p (x)2 + k2 p (y)2 + 2 k2 P1(x, y) .

Therefore, p
(
k (x+y)

)2
= p ( k x+k y)2 , and thus by the nonnegativity of p (4)

also holds.

Remark 3.4. Note that, in particular, (2) yields

p (0) = 0 and p (−x) = p (x)

for all x ∈ X.
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Remark 3.5. Moreover, to feel the importance of (4), note that for any x, y ∈ X ,
we have 2 (x+ y ) = 2x+ 2 y if and only if y + x = x+ y .

Therefore, if x and y do not commute, then 2 (x + y ) 6= 2x + 2 y . However,
by (4), we still have p

(
2 (x+ y)

)
= p ( 2x+ 2 y) .

Remark 3.6. Moreover, we can also note that P is an inner product on X if and
only if p (x) = 0 implies x = 0 for all x ∈ X.

Now, by using Theorems 3.3 and 2.4, we can also easily prove the following

Theorem 3.7. For all x, y ∈ X we have

(1) p (x− y)2 = p (x+ y)2 − 4P1(x, y) ,

(2) p (x− y)2 = 2 p (x)2 + 2 p (y)2 − p (x+ y )2 .

Proof. By Theorem 3.3, we have p (x+y)2 = p (x)2 + p (y)2 + 2P1(x, y) . Hence,
by Theorems 3.3 and 2.4, we can see that

p (x− y)2 = p (x)2 + p (−y )2 + 2P1(x, −y) = p (x)2 + p (y)2 − 2P1(x, y) .

Therefore,

p(x+ y)2+ p(x− y)2 = 2p(x)2 + 2p(y)2 and p(x+ y)2− p(x− y)2 = 4P1(x, y).

Thus, the required equalities are also true.

Moreover, as an immediate consequence of Theorems 3.7 and 3.3, we can state

Theorem 3.8. For all x, y ∈ X we have

(1) P1(x, y) = 4−1
(
p (x+ y)2 − p (x− y)2

)
,

(2) P1(x, y) = 2−1
(
p (x+ y)2 − p (x)2 − p (y)2

)
.

Remark 3.9. Unfortunately, now similar polar formulas for P (x, y) cannot be
proved. Therefore, P can be recovered from p only in the real-valued case.

Moreover, in the present generality, the usual Schwarz’s inequality cannot also be
proved. We can only prove a weakened form of it. This will, however, be sufficient
to prove the subadditivity of p .

Lemma 3.10. For any x, y ∈ X, we have

|P1(x, y) | ≤ p (x) p (y) .

Proof. By Theorems 3.3 and 2.4, for any n ∈ N and k ∈ Z , we have

0 ≤ p (nx+ k y )2 = p (nx)2 + p (k y)2 + 2P1(nx, k y)

= n2 p (x)2 + k2 p (y)2 + 2nk P1(x, y) .

Hence, we can see that

0 ≤ p (x)2 + (k/n)2 p (y)2 + 2 (k/n)P1(x, y) .

Therefore, we actually have

0 ≤ p (x)2 + r2 p (y)2 + 2 r P1(x, y) .

for all r ∈ Q . Hence, by using that each real number is a limit of a sequence of
rational numbers, we can already infer that

0 ≤ p (x)2 + λ2 p (y)2 + 2λP1(x, y) ,
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and thus

0 ≤ p (x)2 + λP1(x, y) + λ
(
λ p (y)2 + P1(x, y)

)
also holds for all λ ∈ R .

Hence, if p (y) 6= 0 , then by taking λ = −P1(x, y)/p (y)2 we can see that

0 ≤ p (x)2 − P1(x, y)2/ p (y)2 , and thus P1(x, y)2 ≤
(
p (x) p (y)

)2
.

Therefore, by the nonnegativity of p , the required inequality is also true.

While, if p (y) = 0 , then by taking n ∈ N and λ = −nP1(x, y) , we can see
that

0 ≤ p (x)2 − 2nP1(x, y)2, and thus P1(x, y)2 ≤ p (x)2/ 2n .

Hence, by taking the limit n → ∞ , we can infer that P1(x, y) = 0 . Therefore,
the required inequality trivially holds.

Now, by using assertion (5) or (6) of Theorem 3.3 and a consequence of the above
lemma, we can easily prove the first statement of the following

Theorem 3.11. For any x, y ∈ X, we have

(1) p (x+ y) ≤ p (x) + p (y) , (2) | p (x)− p (y) | ≤ p (x− y ) .

Proof. By using Theorem 3.3 and the inequality P1(x, y) ≤ p (x) p (y) , we can see
that

p (x+ y)2 = P1(x+ y, x) + P1(x+ y, y) ≤ p (x+ y) p (x) + p (x+ y) p (y) .

Therefore, by the nonnegativity of p , (1) also holds.

Now, by using (1), we can also see that

p (x) = p (x− y + y) ≤ p (x− y) + p (y) ,

and thus p (x)− p (y) ≤ p (x− y) . Hence, by changing the roles of x and y , and
using Theorem 3.3, we can infer that

−
(
p (x)− p (y)

)
= p (y)− p (x) ≤ p (y − x) = p

(
−(x− y)

)
= p (x− y) .

Therefore, by the definition of the absolute value, (2) also holds.

Remark 3.12. On the other hand, by using Theorem 3.3, we can easily see that
p (x+ y) ≤ p (x) + p (y) implies P1(x, y) ≤ p (x) p (y) for all x , y ∈ X.

Moreover, if P1(x, y) ≤ p (x) p (y) holds for all x, y ∈ X, then by using
Remarks 2.5 and 3.4 we can see that

−P1(x, y) = P1(x, −y) ≤ p (x) p (−y) = p (x) p (y) ,

and thus |P1(x, y) | ≤ p (x) p (y) also holds for all x, y ∈ X.

Remark 3.13. Theorems 3.3 and 3.11 show that the function p is a seminorm
on X by a terminology of [15] .

Moreover, by Remark 3.6, we can see that p is a norm on X if and only if P
is an inner product on X.
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4. Some further results on the seminorms p

Theorem 4.1. For any n ∈ N with n > 1 and

x =

n∑
i=1

xi with xi ∈ X,

we have

(1) p (x)2 =

n∑
i=1

P1(x, xi) ,

(2) p (x)2 =

n∑
i=1

p (xi)
2 +

∑
1≤i<j≤n

2P1(xi + xj) ,

(3) p (x)2 =
∑

1≤i<j≤n

p (xi + xj)
2 −

n∑
i=1

(n− 2) p (xi)
2 .

Proof. The precise proofs of these equalities, by induction on n , requires lengthy
computations.

For instance, to prove (3), we must note that the n = 2 particular case of (3)
trivially holds. Moreover, if (3) holds and xn+1 ∈ X , then by Theorem 3.3, the
corresponding additivity property of P1 and assertion (3), we have

p (x+ xn+1)2 = p (x)2 + p (xn+1)2 + 2P1(x, xn+1)

= p (x)2 + p (xn+1)2 +

n∑
i=1

2P1(xi , xn+1)

= p (x)2 + p (xn+1)2 +

n∑
i=1

(
p (xi + xn+1)2 − p (xi)

2 − p (xn+1)2
)

=
∑

1≤i<j≤n

p (xi + xj)
2 −

n∑
i=1

(n− 2) p (xi)
2

+ p (xn+1)2 +

n∑
i=1

p (xi + xn+1)2 −
n∑
i=1

p (xi)
2 − n p (xn+1)2

=
∑

1≤i<j≤n

p (xi + xj)
2 +

n∑
i=1

p (xi + xn+1)2

−
n∑
i=1

(n− 1) p (xi)
2 − (n− 1) p (xn+1)2

=
∑

1≤i<j≤n

p (xi + xj)
2 +

n∑
i=1

p (xi + xn+1)2 −
n+1∑
i=1

(n− 1) p (xi)
2 .

Therefore, to obtain

p (x+ xn+1)2 =
∑

1≤i<j≤n+1

p (xi + xj)
2 +

n+1∑
i=1

(n+ 1− 2) p (xi)
2 ,
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it remains only to prove that∑
1≤i<j≤n

p (xi + xj)
2 +

n∑
i=1

p (xi + xn+1)2 =
∑

1≤i<j≤n+1

p (xi + xj)
2 .

The latter assertion should also be proved by induction on n.

Remark 4.2. Fortunately, in papers [14] and [1] , we only need the n = 3 and
n = 4 particular cases of the above theorem.

In these particular cases of (3), we must only prove that

(a) p (x1 + x2 + x3)2 = p (x1 + x2)2 + p (x1 + x3)2 + p (x2 + x3)2

− p (x1)2 − p (x2)2 − p (x3)2 ,

(b) p (x1 + x2 + x3 + x4)2 = p (x1 + x2)2 + p (x1 + x3)2 + p (x1 + x4)2

+ p (x2 + x3)2 + p (x2 + x4)2 + p (x3 + x4)2

− 2 p (x1)2 − 2 p (x2)2 − 2 p (x3)2 − 2 p (x4)2 ,

for any x1 , x2 , x3 , x4 ∈ X.

Remark 4.3. By Stetkaer [16, p. 248] , the above parallelepiped law (a) plays
a similar role in characterizations of inner product spaces as the parallelogram
identity established in assertion (2) of Theorem 3.7. Moreover, the letter one can
be derived from the former one by taking x3 = −x2 .

Remark 4.4. In this respect, it is also worth noticing that if f is a function of a
group X to C such that for any x, y, z ∈ Y we have

(A) f (x+ y)2 = f (y + x)2 ,

(B) f (x+y+z )2 = f (x+y)2+ f (x+z)2+ f (y+z)2−f (x)2−f (y)2−f (z)2 ,

then by [16, Proposition 13.25] of Stetkaer there exist a unique additive function a
of X to C and a unique symmetric, biadditive function A of X 2 to C such that

f (x)2 = a (x) + A (x, x)

for all x ∈ X.

Hence, if in addition f is even, we can infer that

a (x) + A (x, x) = f (x)2 = f (−x)2 = a (−x) + A (−x, −x) = −a (x) + A (x, x) ,

and thus a (x) = 0 for all x ∈ X. Therefore, we have f (x)2 = A (x, x) for all

x ∈ X. Hence, if in addition f is nonnegative, we can infer that f (x) =
√
A (x, x )

for all x ∈ X.

Now, by using Theorem 4.1, one can also prove the following

Theorem 4.5. Under the notations of Theorem 4.1, for any injective function ν
of the set { 1, 2, . . . , n

}
onto itself, we have

p (x) = p
( n∑
i=1

xν(i)

)
.
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Remark 4.6. Fortunately, in the sequel, we shall only need the n = 4 , and

ν (1) = 1 , ν (2) = 4 , ν (3) = 1 , ν(4) = 2 ,
and

ν (1) = 2 , ν (2) = 3 , ν (3) = 1 , ν(4) = 4 ,

particular cases of the above theorem.

That is, the consequences of Remark 4.2 and Theorem 3.3 that

(a) p (x1 + x2 + x3 + x4) = p (x1 + x4 + x3 + x2) ,

(b) p (x1 + x2 + x3 + x4) = p (x2 + x3 + x1 + x4) ,

hold true for all x1 , x2 , x3 , x4 ∈ X.

5. The induced semimetrics

Definition 5.1. For any x, y ∈ X, we define

d (x, y) = p (−x+ y) .

Example 5.2. Note that if in particular p is as in Example 3.2, then

d (x, y) = ‖ a (x)− a (y) ‖
for all x, y ∈ X.

The most basic properties of the function d can be listed in the following

Theorem 5.3. For any x, y, z, w ∈ X, we have

(1) d (x, y) ≥ 0 ,

(2) d (x, y) = d (y, x) ,

(3) d (x+ y , y + x ) = 0 ,

(4) d( k x, k y) = | k | d(x, y) ,

(5) d (x, y) = d ( z + x , z + y ) ,

(6) d (x, y) = d (x+ z , y + z ) ,

(7) d (x, z) ≤ d (x, y) + d (y, z) ,

(8) | d (x, y)− d (x, z) | ≤ d (y, z) ,

(9) d (x+ y , z + w ) ≤ d (x, z) + d (y, w) ,

(10) | d (x, y)− d (z, w) | ≤ d (x, z) + d (y, w) .

Proof. By Definition 5.1 and Theorems 3.3 and 3.11, we have

d (y, x) = p (−y + x) = p
(
−(−x+ y)

)
= p (−x+ y) = d (x, y) ,

and

d (x, z) = p (−x+ z ) = p (−x+ y − y + z)

≤ p (−x+ y) + p (−y + z) = d (x, y) + d (y, z) .

Therefore, assertions (2) and (7) are.
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Moreover, by using Theorem 3.3, we can also see that

d ( z+x , z+y ) = p
(
−(z+x)+ z+y

)
= p (−x−z+z+y) = p (−x+y) = d (x, y) ,

and

d (x+ z , y + z ) = p
(
−(x+ z) + y + z

)
= p

(
y + z − (x+ z)

)
= p (y + z − z − x) = p (y − x) = p (−x+ y) = d (x, y) .

Therefore, assertions (5) and (6) are also true.

Furthermore, by using Theorem 3.3 and Remark 4.8, we can see that

d( k x, k y) = p (−k x+ k x) = p
(
k (−x) + k x

)
= p

(
k (−x+ y)

)
= | k | p (−x+ y ) = | k | d(x, y)

d (x+ y , y + x ) = p
(
−(x+ y) + y + x )

)
= p (−y − x + y + x) = p (−x+ y − y + x ) = p (0) = 0 .

Therefore, assertions (4) and (3) are also true.

In a more general setting, assertion (8) can be derived from (7), and (10) can be
derived from (8), by using (2). However, in our present setting, we can apply more
direct proofs.

For instance, by using Theorem 3.11 and Remark 4.8, we can easily see that

| d (x, y)− d (z, w) | = | p (−x+ y)− p (−z + w ) |
≤ p

(
−x+ y − (−z + w)

)
= p (−x+ y − w + z ) = p (−x+ z − w + y )

≤ p (−x+ z) + p (−w + y) = d (x, y) + d (w, y) = d (x, y) + d (y, w) .

Therefore, assertion (10) is also true. Now, by by taking x in place of z and z in
place of w in (10), we can see that (8) is also true.

Remark 5.4. The above theorem shows that d is a translation-invariant semi-
metric on X.

Moreover, we can also state that d is a metric on X if and only if P is an inner
product on X.

Therefore, as an immediate consequence of assertion (3) of Theorem 5.3, we can
also state

Corollary 5.5. If in particular P is an inner product on X, then X is necessarily
commutative.

Remark 5.6. Note that the rectangle inequality (10) assures some continuity prop-
erty of the semimetric d with respect to itself.

While, assertions (4) and (9) assure some continuity properties of two algebraic
operations in X with respect to d .
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