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A GENERALIZATION OF A THEOREM MAKSA AND

VOLKMANN ON ADDITIVE FUNCTIONS

ÁRPÁD SZÁZ

Abstract. By introducing inner products on groups, we generalize a famous

theorem of Gyula Maksa and Peter Volkmann on additive functions of a group
to an inner product space.

1. Introduction

In this paper, by introducing inner products on groups, we shall generalize the
following famous theorem of Maksa and Volkmann [7] .

Theorem 1.1. For functions f : G → E from a group G to a real or complex
inner product space E, the inequality

(1) ‖ f (x y) ‖ ≥ ‖ f (x) + f (y) ‖
(
x, y ∈ G

)
implies

(2) f (x y) = f (x) + f(y)
(
x, y ∈ G

)
.

Remark 1.2. For the origins of this theorem and the long history of the alternative
Cauchy equation

(3) ‖ f (x + y ) ‖ = ‖ f (x) + f(y) ‖ ,
see Hosszú [5] , Fischer and Muszély [3] , Kurepa [6] , Skof [11, 12] , Schöpf [10] ,
and Ger and Koclega [4] .

2. Semi-inner products on groups

The most useful seminorms on vector spaces are derived from semi-inner
products [13] . Therefore, it seems convenient to introduce the following

Definition 2.1. For any group X, a function P of X 2 to C will be called a
semi-inner product on X if

(a) P (x, x) ≥ 0 for all x ∈ X ,

(b) P (y, x) = P (x, y) for all x, y ∈ X ,

(c) P (x + y, z) = P (x, z) + P (y, z) for all x, y, z ∈ X .
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Remark 2.2. By using (b) and (c) and the additivity of complex conjugation, we
can see

P (x, y + z) = P (y + z, x ) = P (y, x ) + P (z, x )

= P (y, x ) + P (z, x ) = P (x, y) + P (x, z)

for all x, y, z ∈ X. Thus, the semi-inner product P is in particular a biadditve
function of X 2 to C .

Therefore, as an immediate consequence of some basic facts on additive functions
of one group to another [16, Sec. 2.1] , we can at once state the following

Theorem 2.3. If P is a semi-inner product on a group X, then

(1) P (0, x) = 0 and P (x, 0) = 0 for all x ∈ X ,

(2) P (−x, y ) = −P (x, y) and P (x, −y ) = −P (x, y) for all x ∈ X ,

(3) P (k x, y ) = k P (x, y) and P (x, k y ) = k P (x, y) for all k ∈ Z and
x ∈ X .

Remark 2.4. Note that the first and second coordinate functions P1 and P2 also
have the corresponding bilinearity properties.

Moreover, because of properties (a) and (b), we have

(1) P1 (x, x) = P (x, x) ≥ 0 and P2(x, x) = 0 for all x ∈ X ,

(2) P1 (y, x) = P1 (x, y) and P2 (y, x) = −P2 (x, y) for all x, y ∈ X .

Thus, in particular P1 is also a semi-inner product on X. However, because of
its skew-symmetry, P2 cannot be a semi-inner product on X whenever it is not
identically zero.

The importance of semi-inner products lies mainly in the following

Theorem 2.5. If P is a semi-inner product on a group X and

p (x) =
√

P (x, x)

for all x ∈ X, then

(1) p (0) = 0 ,

(2) p (−x ) = p (x) for all x ∈ X,

(3) p ( k x ) = | k | p (x) for all k ∈ Z and x ∈ X ,

(4) p (x + y)2 = p (x)2 + p (y)2 + 2 P1(x, y) for all x, y ∈ X .

Proof. To check (4), note that by the corresponding definitions and the biadditivity
of P we have

p (x + y)2 = P (x + y, x + y ) = P (x, x + y ) + P ( y, x + y )

= P (x, x)+P (x, y)+P ( y, x)+P (y, y) = p (x)2 +P (x, y)+P (x, y)+ p (y)2

= p (x)2 + 2P (x, y)1 + p (y)2 = p (x)2 + 2P1(x, y) + p (y)2

for all x, y ∈ X. Therefore, the required equality is true.



3

Now, by using Theorems 2.5 and 2.3, we can easily establish the following two
useful corollaries.

Corollary 2.6. If p is as in Theorem 2.5, then for any x, y ∈ X the following
assertions are equivalent :

(1) p (x + y ) ≤ p (x) + p (y) , (2) P1(x, y) ≤ p (x) p (y) .

Proof. To prove that (1) implies (2), note that if (1) holds, then by Theorem 2.5
we have

2P1(x, , y) = p (x + y)2 − p (x)2 − p (y)2

≤
(
p (x) + p (y)

)2 − p (x)2 − p (y)2 = 2 p (x) p (y) .

Therefore, (3) also holds.

Remark 2.7. Unfortunately, now even the weakened Schwarz inequality (2) cannot
be proved. Therefore, the function p considered in Theorem 2.5 need not be
subadditive, and thus a seminorm.

Corollary 2.8. If p is as in Theorem 2.5, then for any x, y ∈ X we have

(1) 4P1(x, y) = p (x + y)2 − p (x− y)2 ,

(2) p (x + y)2 + p (x− y)2 = 2 p (x)2 + 2 p (y)2 .

Proof. To check this, note that by Theorems 2.5 and 2.3, we have

p (x + y)2 = p (x)2 + p (y)2 + 2P1(x, y)

and

p (x− y)2 = p (x)2 + p (−y )2 + 2P1(x, −y) = p (x)2 + p (y)2 − 2P1(x, y) .

Remark 2.9. Unfortunately, now a similar polar formula for P2(x, y) cannot be
proved. Therefore, P can be recovered from p only in the real-valued case.

Assertion (4) of Theorem 2.5 can be extended to certain families of elements of
X. However, in the sequel, we shall only need the following very particular result.

Theorem 2.10. If p is as in Theorem 2.5, then for any x, y, z ∈ X, we have

p (x + y + z )2 = p (x)2 + p (y)2 + p (z)2 + 2P1(x, y) + 2P1(x, z) + 2P1(y, z).

Proof. By using Theorem 2.5, we can easily see that

p (x + y + z )2 = p
(
(x + y) + z

)2
= p (x + y)2 + p (z)2 + 2P1(x + y, z )

= p (x)2 + p (y)2 + 2P1(x, y) + p (z)2 + 2P1(x, z) + 2P1(y, z) .

Therefore, the required equality is also true.

Now, by using the Theorems 2.5 and 2.9, we can also easily prove the following

Corollary 2.11. If p is as in Theorem 2.5, then for any x, y, z ∈ X, we have

(1) p (x)2 + p (y)2 +p (z)2 + p (x+y+z )2 = p (x+y)2 + p (x+z)2 + p (y+z)2 ,

(2) p (x+ y + z )2 = P1(x+ y + z, x ) + P1(x+ y + z, y ) + P1(x+ y + z, z ) .
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Proof. To prove (2), note that by Theorem 2.9 we have

P1(x + y + z, x ) + P1(x + y + z, y ) + P1(x + y + z, z )

= P1(x, x) + P1(y, x) + P1(z, x) + P1(x, y) + P1(y, y) + P1(z, y)

+ P1(x, z) + P1(y, z) + P1 (z, z)

= p (x)2 + P1(x, y) + P1(x, z) + P1(x, y) + p (y)2 + P1(y, z)

+ P1(x, z) + P1(y, z) + p (z)2

= p (x)2 + p (y)2 + p (z)2 + 2P1(x, y) + 2P1(x, z) + 2P1(y, z)

= p (x + y + z )2 .

Remark 2.12. By Stetkaer [16, p. 248] , the above parallelepiped law plays the
same role in characterizations of inner product spaces as the parallelogram identity
established in Corollary 2.8.

3. Two characterizations of additive functions

Definition 3.1. A semi-inner product P on a group X will be called an inner
product if P (x, x) = 0 implies x = 0 for all x ∈ X.

Remark 3.2. Thus, the semi-inner product P is an inner product if and only if,
under the notation of Theorem 2.5, p (x) = 0 implies x = 0 for all x ∈ X.

Now, we are ready to prove the following straightforward generalization of
Theorem 1.1 of Maksa and Volkmann.

Theorem 3.3. If f is a function of one group X to another Y , Q is an inner
product on Y and

q (y) =
√

Q(y, y)

for all y ∈ Y , then the following assertions are equivalent :

(1) f is additive,

(2) q
(
f(x) + f (y)

)
≤ q

(
f (x + y)

)
for all x, y ∈ X,

(3) f is odd and

2 Q1

(
f (x), f (y)

)
≤ q

(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2

for all x, y ∈ X.

Proof. Since, (1) implies that

f(x) + f(y) = f (x + y) , and thus q
(
f(x) + f (y)

)
= q

(
f (x + y)

)
for all x, y ∈ X, we need only show that (2) implies (3) implies (1).

From (2), by using Theorem 2.5, we can see that

2 q
(
f (0)

)
= q

(
2 f (0)

)
≤ q

(
f (0)

)
,

and thus q
(
f (0)

)
≤ 0 . Therefore, q

(
f (0)

)
= 0 , and thus f (0) = 0 .

Now, from (2), we can also see that

q
(
f (x) + f (−x )

)
≤ q

(
f (0)

)
= q (0) = 0 ,
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and thus f (x) + f (−x ) = 0 for all x ∈ X. Therefore, f is odd.

Moreover, from (2), by using Theorem 2.5, we can see that

q
(
f (x)

)2
+ p

(
f (y)

)2
+ 2Q1

(
f (x), f (y)

)
= q

(
f (x)+ f (y)

)2 ≤ q
(
f (x+y)

)2
,

and thus

2Q1

(
f (x), f (y)

)
≤ q

(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2

for all x, y ∈ X. Therefore, (2) implies (3).

On the other hand, if (3) holds, then by using Theorem 2.10, 2.5 and 2.3 we can
see that

q
(
f (x) + f (y)− f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2 − q
(
f (x + y)

)2

= 2 Q1

(
f (x), f (y)

)
+ 2 Q1

(
f (x),−f (x + y)

)
+ 2 Q1

(
f (y),−f (x + y)

)
= 2 Q1

(
f (x), f (y)

)
+ 2 Q1

(
f (−x ), f (x + y)

)
+ 2 Q1

(
f (x + y), f (−y )

)
≤ q

(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2
+

q
(
f (y)

)2− q
(
f (−x)

)2− q
(
f (x+y)

)2
+ q

(
f (x)

)2− q
(
f (x+y)

)2− q
(
f (−y )

)2

= q
(
f (x + y)

)2 − q
(
f (x)

)2 − q
(
f (y)

)2
+

q
(
f (y)

)2 − q
(
f (x)

)2 − q
(
f (x + y)

)2
+ q

(
f (x)

)2 − q
(
f (x + y)

)2 − q
(
f (y)

)2

= −q
(
f (x)

)2 − q
(
f (y)

)2 − q
(
f (x + y)

)2

and thus

q
(
f (x) + f (y)− f (x + y)

)2 ≤ 0

for all x, y ∈ X. Hence, we can already infer that

f (x) + f (y)− f (x + y) = 0

for all x, y ∈ X. Therefore, (1) also holds.

Remark 3.4. Note that the above proof does not requires particular tricks. There-
fore, it is more simple than the one given by Maksa and Volkmann [7] .

Application of Theorem 3.3 to the proof of the left-invariance of some particular
generalized metrics will be given in a forthcoming technical report [15] .

Acknowledgement. The author is indebted to Gyula Maksa and Zoltán Boros
for some inspirating conversations.
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[7] Gy. Maksa and P. Volkmann, Characterizations of group homomorphisms having values in
an inner product space, Publ. Math. Debrecen 56 (2000), 197–200.

[8] K. Piejko, Note on Robinson’s Functional equation, Demonstratio Math. 32 (1999),

713–715.
[9] R. Ger, On a characterization of strictly convex spaces, Atti Acad. Sci. Torino Cl. Sci. Fis.

Mat. Natur. 127 (1993), 131–138.
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