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Abstract. As a main result of this paper, we shall show that a natural gene-

ralization of a restricted stability theorem of László Losonczi on Cauchy diffe-
rences to symmetric semi-cocycles can be derived from a similar generalization

of an asymptotic stability theorem of Anna Bahyrycz, Zsolt Páles and Mag-

dalena Piszczek.

For this, by using our former results, we shall prove that if F is a symmetric
semi-cocycle on an unbounded commutative preseminormed group X to an

arbitrary commutative preseminormed group Y , and S is a relation on X
such that the intersection of the domain and the range of S is bounded, then

sup
z∈X2

‖F (z) ‖ ≤ 5 sup
z∈Sc

‖F (z) ‖ .

1. Introduction

In [30] , generalizing and sharpening a restricted stability theorem of Skof [36] ,
László Losonczi has proved the following

Theorem 1.1. Let X be a normed linear space, Y a Banach space and ε ≥ 0 .
Let further B be a subset of X 2 such that the first (or second) coordinates of the
points of B form a bounded set.

If g : X → Y satisfies the inequality

‖ g (x+ y )− g (x)− g(y) ‖ ≤ ε
(

(x, y ) ∈ X 2 −B
)
,

then there exists a unique function A : X → Y additive on X 2, that is

A (x+ y )−A (x)−A (y) = 0
(

(x, y ) ∈ X 2
)
,

such that

‖ g (x)−A (x) ‖ ≤ 5 ε
(
x ∈ X

)
.

Remark 1.2. Here, analogously to the forthcoming theorems, it is also necessary
to assume that X is unbounded. That is, X 6= {0} .

Namely, if this not the case, then by taking B = {(0 , 0)} we can see that any
function g of X to Y satisfies the condition of the theorem. While, f = B , the
only additive function of X to Y , need not have the required property.
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Now, we shall show that a natural generalization of the above theorem to sym-
metric semi-cocycles can be derived from a similar generalization of the following
asymptotic stability theorem of Bahyrycz, Páles and Piszczek [3] .

Theorem 1.3. Let (X, + , d) and (Y, + , ρ) be metric abelian groups such that
X is unbounded by d . Let ε ≥ 0 and assume that f : X → Y possesses the
following asymptotic stability property

lim sup
min( ‖x‖d , ‖y‖d)→∞

‖ f (x+ y )− f (x)− f(y) ‖ρ ≤ ε ,

then
‖ f (x+ y )− f (x)− f(y) ‖ρ ≤ 5 ε for all x, y ∈ X.

Remark 1.4. Moreover, by taking ε > 0 and x0 ∈ X\{0} , and defining f (x0) =
3 ε and f (x) = ε for x ∈ X \ {x0} , they have also proved that 5 is the smallest
possible constant in their theorem.

More concretely, as a main result of this paper, we shall prove the following

Theorem 1.5. If F is a symmetric semi-cocycle on an unbounded commutative
preseminormed group X to an arbitrary commutative preseminormed group Y , and
S is a relation on X such that the intersection of the domain and the range of S
is bounded, then

sup
z∈X2

‖F (z) ‖ ≤ 5 sup
z∈Sc

‖F (z) ‖ .

Remark 1.6. Hence, by using a simple extension of the classical Hyers theorem
[20] , a straightforward generalization of Theorem 1.1 can be immediately derived.

2. A few basic facts on relations and preseminorms

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊆ X 2, with X 2 = X×X, then we simply say that F is a relation on X.
In particular, ∆X = {(x, x) : x ∈ X } is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
F (x) = { y ∈ Y : (x, y ) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images

of x and A under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called
the domain and range of F , respectively. If in particular DF = X, then we say
that F is a relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x? and x ∗ y instead of ?(x) and ∗

(
(x, y )

)
.

Furthermore, a function d of X2 to R is called a distance function on X. And,
for any r > 0 , the relation B d

r = {(x, y ) : d(x, y ) < r} is called the r-sized
surrounding on X generated by d.

If F is a relation on X to Y , then F =
⋃
x∈X {x}×F (x). Therefore, the

values F (x), where x ∈ X, uniquely determine F . Thus, a relation F onX to
Y can also be naturally defined by specifying F (x) for all x ∈ X.
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For instance, the complement relation F c can be naturally defined such that
F c(x) = F (x)c = Y \ F (x) for all x ∈ X. Thus, we also have F c = X×Y \ F .
And, it is noteworthy that F c [A ] c =

⋂
a∈A F (a) for all A ⊆ X.

Quite similarly, the inverse relation F −1 can be naturally defined such that
F −1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y . Thus, we also have F −1 = {(y , x) :
(x, y ) ∈ F

}
. And, it is noteworthy that (F c )−1 = (F −1 )c .

Moreover, if in addition G is a relation on Y to Z, then the composition relation
G ◦ F can be naturally defined such that (G ◦ F )(x) = G [F (x) ] for all x ∈ X.
Thus, we also have (G ◦ F ) [A ] = G

[
F [A ]

]
for all A ⊆ X.

For any A ⊆ X , the Pervin relation RA = A2 ∪ Ac×X is a preorder (reflexive
and transitive) relation on X in the sense that ∆X ⊆ RA and RA ◦ RA ⊆ RA

[41] . Thus, RA is idempotent in the sense that RA = R 2
A with R 2

A = RA ◦ RA .

A distance function d on X will be called a semimetric if it is symmetric and
triangular in the sense that d (x, y ) = d (y , x) and d (x, z) ≤ d (x, y) + d (y , z )
for all x, y , z ∈ X. ( The assumption d (x, x) = 0 will not be needed.)

In particular, a function p on a group X to R will be called a preseminorm on
X if it is even and subadditive in the sense that p (−x) = p (x) and p (x+ y ) ≤
p (x) + p (y) for all x, y ∈ X. ( The assumption p(0) = 0 will not be needed.)

If a semimetric d on X is left-invariant in the sense that d (z + x, z + y ) =
d (x y ) for all x, y , z ∈ X, and pd (x) = d (0 , x) for all x ∈ X, then it can be
easily seen that pd is a preseminorm on X.

Conversely, if p is a preseminorm on X and dp (x, y ) = p (−x + y ) for all
x y ∈ X, then it can be easily seen that dp is a left-invariant semimetric on X
such that | p (x)− p (y) | ≤ dp (x, y ) for all x, y ∈ X.

Under the pointwise inequality, for any preseminorm p and left-invariant semi-
metric d on X, we have dp ≤ d if and only if p ≤ pd . Therefore, the mappings
p 7→ dp and d 7→ pd form a Galois connection [43] .

Thus, in particular we have p = pdp
and d = dpd

for any preseminorm p and
left-invariant semimetric d on X. Therefore, in the group X, preseminorms and
left-invariant semimetrics are equivalent tools.

However, the former ones, being functions of only one variable, are more conve-
nient tools than the latter ones. Therefore, in contrast to several former authors,
we shall use preseminorms instead of left-invariant semimetrics.

If p is a preseminorm on X, then by using induction and the correspond-
ing definitions we can easily see that p (nx) ≤ n p (x) , and thus p ((−n)x) =
p (n (−x)) ≤ n p (−x) = n p (x) for all n ∈ N and x ∈ X.

Therefore, the preseminorm ‖ ‖ may be naturally called a seminorm if n ‖x ‖ ≤
‖nx ‖ for all x ∈ X. Namely, thus we also have ‖ k x ‖ = | k | ‖x ‖ for all x ∈ X
and k ∈ Z \ {0} . ( Clearly, if ‖ 0 ‖ = 0 , then this also holds for k = 0 .)

To see one advantage of preseminorms over seminorms, note that a nonzero
seminorm ‖ ‖ on X cannot be bounded. While, for instance, the function ‖ ‖?
defined by ‖x ‖? = min {1 , ‖x ‖} for all x ∈ X is a bounded preseminorm on X.

Now, a seminorm (preseminorm) p on X may be naturally called a norm
(prenorm) if p (x) = 0 implies x = 0 for all x ∈ X. Note that if X = Zx
for all x ∈ X \ {0} , then each nonzero preseminorm on X is a prenorm.
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In the sequel, for instance, an ordered pair X (p) = (X, p) consisting a group
X and a preseminorm p , will be called a preseminormed group. Moreover, we
shall write ‖x ‖ instead of p (x) for any point x and preseminorm p .

3. A few basic facts on cocycles

Notation 3.1. In this and the subsequent section, we shall assume that F is a
function of one commutative group X to another Y .

Remark 3.2. Note that now, by defining (x, y) + (z , w) = (x + z , y + w ) for
all x, y , z , w ∈ X, the set X 2 can also be turned into a commutative group.

Definition 3.3. Under Notation 3.1, we shall say that :

(1) F is symmetric (skew-symmetric) if

F (x, y ) = F (y , x)
(
F (x, y ) = −F (y , x)

)
for all x, y ∈ X,

(2) F is cocyclic if

F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z )

for all x, y , z ∈ X.

Remark 3.4. If F is a cocyclic function of X 2 to Y , then according to Davison
and Ebanks [10] and Stetkaer [39, p. 280] , we may also say that F is a cocycle
on X to Y .

The following two simple theorems give some useful examples for cocycles. The
first one was already used by Erdős [12, p. 5] and Aczél [1, p. 66] .

Theorem 3.5. If F is biadditive in the sense that it is additive in each of its
variable, then F is cocyclic.

Remark 3.6. Conversely, in [44] , it has been proved that if F is cocyclic and
additive in one of its variables, then F is biadditive.

Moreover, it can be shown that if Y is 2–cancelable in the sense that 2 y = 2 z
implies y = z for all y , z ∈ Y , then every skew-symmetric cocycle on X to Y is
biadditive. ( For the origins of this result, see [12, 17, 1, 10] . )

The following theorem has been first proved in [44] by the present author.

Theorem 3.7. If F is additive as a function of X 2 to Y and F (x, 0) = F (0 , y )
for all x, y ∈ X, then F is cocyclic.

Remark 3.8. Conversely, it can be shown that if F is cocyclic, then

F (x, 0) = F (0 , 0) and F (0, y ) = F (0 , 0)

for all x, y ∈ X. ( This was already stated in [23, p. 258] and [10, Lemma 1] .)

Definition 3.9. The function F will be called Cauchy if there exists a function
f of X to Y such that

F (x, y ) = f (x+ y )− f (x)− f (y)

for all x, y ∈ X.



STABILITY THEOREMS ON GENERALIZE COCYCLES 5

Remark 3.10. In this case, by Davison and Ebanks [10] and Stetkaer [39, pp.
16, 280] , we should say that F is the Cauchy difference (or kernel) of f , or that
F is a coboundary with generator function −f .

In [44] , in addition to Definition 3.9, we have also introduced the following

Definition 3.11. The function F will be called quasi-Cauchy if it is both sym-
metric and cocyclic.

The appropriateness of this definition is apparent from the following simple, but
important theorem.

Theorem 3.12. If F is Cauchy, then it is quasi-Cauchy.

Remark 3.13. The X = Y = R particular case of this theorem was already
established by Kurepa [29] who, having in mind the case of additive functions,
conjectured that the converse statement need not be true.

Jenő Erdős [12] , answering the question of Kurepa [29] , proved that an
arbitrary cocycle on R need not be symmetric. Moreover, by using a theorem of
O. Schreier on group extensions and a theorem R. Baer on direct sums, he proved
that every quasi-Cauchy function of R2 to R is Cauchy.

By the proof of Erdős [12] and a theorem of Jessen, Karp and Thorup [23] ,
more generally we can also state that if Y is n–divisible for all n ∈ N in the sense
that Y = nY ( i. e., for each y ∈ Y there exists z ∈ Y such that y = n z ), then
every quasi-Cauchy function of X 2 to Y is already Cauchy.

4. A few basic facts on generalized cocycles

In [44] , motivated by some observations of Davison and Ebanks [10] and
Bahyrycz and Páles and Piszczek [3] , we have also introduced the following

Definition 4.1. In addition to (2) in Definition 3.3, we shall say that :

(1) F is semi-cocyclic if

F (x, y ) + F (u, y + v ) + F (x+ y , u+ v )

= F (x, u) + F (y , u+ v ) + F (x+ u, y + v )

for all x, y , u, v ∈ X,

(2) F is pseudo-cocyclic if

F (x, y ) + F (x− u, u) + F (y − v , u) + F (y − v, v )

= F (u, v ) + F (u, y − v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v )

for all x, y , u, v ∈ X.

Remark 4.2. Now, analogously to Definition 3.11, the function F may also be
naturally called semi-Cauchy (pseudo-Cauchy) if it is both symmetric and semi-
cocyclic (pseudo-cocyclic) .

Moreover, because of the terms F (y − v , u) and F (u, y − v ) in (2), we may
also naturally introduce the following
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Definition 4.3. The function F will be called Cauchy-like if

F (x, y ) + F (x− u, u) + F (y − v, v )

= F (u, v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

for all x, y , u, v ∈ X.

Remark 4.4. Namely, thus we can at once state that a pseudo-Cauchy function
is Cauchy-like, and a symmetric Cauchy-like function is pseudo-Cauchy.

Moreover, by using the substitutions x = s + u and y = t + v , suggested by
Gyula Maksa, we can easily prove the following two theorems of [44] .

Theorem 4.5. If F is additive in its second variable, then the following assertions
are equivalent :

(1) F is semi-cocyclic , (2) F is pseudo-cocyclic .

Theorem 4.6. The following assertions are equivalent :

(1) F is Cauchy-like ,

(2) for any x, y , u, v ∈ X, we have

F (x, y ) + F (u, v ) + F (x+ y , u+ v )

= F (x, u) + F (y , v ) + F (x+ u, y + v ) .

Remark 4.7. Note that the latter equation, which is closely related to (1) in
Definition 4.1, is only a rearrangement of an equation of Davison and Ebanks given
in [10, Lemma 2] .

In [44] , by using some lengthy computations, we have also proved the following
theorem which shows the appropriateness of our former definitions.

Theorem 4.8. If F is cocyclic, then it is both semi-cocyclic and pseudo-cocyclic.

Hence, by using Remark 4.2 and Theorem 4.6, we can already derive

Corollary 4.9. If F is quasi-Cauchy, then its is also semi-Cauchy, pseudo-Cauchy
and Cauchy-like.

Remark 4.10. Note that the latter statement is only a reformulation of
[10, Lemma 2] of Davison and Ebanks.

5. Some natural analogues and generalizations of Theorem 1.3

Notation 5.1. In this and the subsequent section, we shall assume that F is a
function of an unbounded commutative preseminormed group X to an arbitrary
commutative preseminormed group Y .

Remark 5.2. Note that now, by defining ‖ (x, y ) ‖ = ‖x ‖ + ‖ y ‖ or

‖ (x, y ) ‖ = ‖x ‖ ∨ ‖ y ‖ = max
{
‖x ‖ , ‖ y ‖

}
for all x, y ∈ X, the group X 2 can also be turned into an unbounded presemi-
normed group.

In [45] , by using some more simple arguments than that used by Bahyrycz, Páles
and Piszczek in [3] , we have proved the following natural analogue of Theorem 1.3.
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Theorem 5.3. If F is semi-cocyclic (pseudo-cocyclic) and

ε = lim
‖z‖→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 5 ε
(
‖F (z) ‖ ≤ 7 ε

)
for all z ∈ X 2 .

Thus, in particular, we can also state

Corollary 5.4. If Y is prenormed, F is either semi-cocyclic or pseudo-cocyclic,
and

lim
‖z‖→+∞

‖F (z) ‖ = 0,

then F (z) = 0 for all z ∈ X 2.

Remark 5.5. In [45] , in addition to the natural preseminorms given in Remark
5.2, we have also defined

∦ (x, y ) ∦= ‖x ‖ ∧ ‖ y ‖ = min
{
‖x ‖ , ‖ y ‖

}
,

for all x, y ∈ X.

Thus, the function ∦ ∦ is not a preseminorm on X 2. However, it can be used
to prove the following natural generalization of Theorem 1.3. ( See [45] .)

Theorem 5.6. If F is pseudo-Cauchy (pseudo-cocyclic) and

ε = lim
∦z∦→+∞

‖F (z) ‖ ,

then

‖F (z) ‖ ≤ 5 ε
(
‖F (z) ‖ ≤ 7 ε

)
for all z ∈ X 2.

Thus, in particular, we can also state

Corollary 5.7. If Y is prenormed, F is pseudo-cocyclic and

lim
∦z∦→+∞

‖F (z) ‖ = 0,

then F (z) = 0 for all z ∈ X 2.

Remark 5.8. Note that ‖ z ‖ ≥ ∦ z ∦ for all z ∈ X 2 . Therefore,{
F (z) : ∦ z ∦ > r

}
⊆
{
F (z) : ‖ z ‖ > r

}
,

and thus

sup
∦z∦ >r

‖F (z ) ‖ ≤ sup
‖z‖>r

‖F (z ) ‖

for all r > 0 . Consequently,

lim
∦z∦→+∞

‖F (z) ‖ = inf
r>0

sup
∦z∦>r

‖F (z ) ‖ ≤ inf
r>0

sup
‖z‖>r

‖F (z ) ‖ = lim
‖z‖→+∞

‖F (z) ‖ .

Therefore, for instance, the second part of Theorem 5.6 is stronger than that of
Theorem 5.3.
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6. A natural generalization of Theorem 1.1

Now, we shall show that Theorem 1.1 can already be derived from a particular
case Theorem 5.3.

For this, it is convenient to prove first the following intermediate theorem which
is of some interest for itself.

Theorem 6.1. If F is semi-Cauchy and S is a relation on X such that DS ∩RS
is a bounded, then

sup
z∈X2

‖F (z) ‖ ≤ 5 sup
z∈Sc

‖F (z) ‖ .

Proof. Define

ε = sup
z∈S c

‖F (z) ‖ .

Then, in particular, we have ‖F (x, y) ‖ ≤ ε for all (x, y ) ∈ S c . ( Note that,
because of the boundedness conditions on X and DS∩RS , we have S 6= X 2 , and
thus S c 6= ∅ . Therefore, ε 6= −∞ , and thus 0 ≤ ε ≤ +∞ by the nonnegativity
of the preseminorm in Y .)

Hence, by using that

(x, y ) ∈
(
S−1

)c
=⇒ (x, y ) /∈ S−1 =⇒ (y , x) /∈ S

=⇒ (y , x) ∈ S c =⇒ ‖F (y , x) ‖ ≤ ε =⇒ ‖F (x, y) ‖ ≤ ε

for all x, y ∈ X, we can see that ‖F (x, y ) ‖ ≤ ε also holds for all (x, y ) ∈
S c∪

(
S−1

)c
, and thus also for all (x, y ) ∈

(
S ∩ S−1

)c
.

Moreover, we can note that

DS∩S−1 ⊆ DS∩DS−1 = DS∩RS and RS∩S−1 = D(S∩S−1)−1 = DS∩S−1 ⊆ DS∩RS .

Therefore,

S ∩ S−1 ⊆ DS∩S−1 × RS∩S−1 ⊆
(
DS ∩RS

)2
.

Now, since DS ∩ RS is bounded, we can see that there exists r > 0 such that
DS ∩RS ⊆ Br (0) , and thus

S ∩ S−1 ⊆
(
DS ∩RS

)2 ⊆ Br (0)2 , whence
(
Br(0)2

)c ⊆ (S ∩ S−1
)c
.

Moreover, we can note that(
Br(0)2

)c
=
(
Br(0)×Br(0)

)c
= Br(0)c ×X ∪ X ×Br(0)c .

Therefore,

Br(0)c ×X ∪ X ×Br(0)c =
(
Br(0)2

)c ⊆ (S ∩ S−1
)c
.

Now, if x, y ∈ X such that ‖ (x, y ) ‖ > r holds with

‖ (x, y ) ‖ = ‖x ‖ ∨ ‖ y ‖ = max
{
‖x ‖ , ‖ y ‖

}
,

then we can note that either ‖x ‖ > r or ‖ y ‖ > r , and thus x ∈ Br(0)c or
y ∈ Br(0)c . Therefore,

(x, y ) ∈
(
Br(0)c ×X

)
∪
(
X ×Br(0)c

)
and thus (x, y ) ∈

(
S ∩ S−1

)c
.

Hence, by our former observation, it follows that ‖F (x, y) ‖ ≤ ε .
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This shows that there exists r > 0 such that ‖F (z) ‖ ≤ ε for all z ∈ X 2 with
‖ z ‖ > r . Hence, it is clear that

lim
‖z‖→+∞

‖F (z) ‖ = inf
r>0

sup
‖z‖>r

‖F (z ) ‖ ≤ ε .

Therefore, by Theorem 5.3, we have ‖F (z) ‖ ≤ 5 ε for all z ∈ X 2. Thus, the
required inequality is also true.

From the above theorem, by using a simple extension of the classical Hyers
theorem [20] , we can immediately derive the following straightforward generaliza-
tion of Theorem 1.1.

Corollary 6.2. If f is a function of X to a Banach space Z and ε ≥ 0 such that
there exists a relation S on X such that DS ∩RS is bounded and

‖ f(x+ y )− f(x)− f(y) ‖ ≤ ε

for all (x, y ) ∈ S c , then there exists a unique additive function g of X to Z such
that

‖ f(x)− g(x) ‖ ≤ 5 ε

for all x, y ∈ X.

Proof. Define

F (x, y ) = f(x+ y )− f(x)− f(y)

for all x, y ∈ X. Then, we can note that F is quasi-Cauchy function such that
‖F (z) ‖ ≤ ε for all for all z ∈ S c.

Therefore, by the corresponding particular case of Theorem 6.1, we also have
‖F (z) ‖ ≤ 5 ε for all z ∈ X 2 , and thus

‖ f(x+ y )− f(x)− f(y) ‖ ≤ 5 ε

for all x, y ∈ X. Hence, by an immediate generalization of the classical Hyers
theorem [20] , it is clear that the required assertion is also true.

Remark 6.3. An interesting partial generalization of Theorem 1.1 of Losonczi has
also been been proved by Jung [25] . ( See also the a = b = 1 particular case of
[26, Theorem 3.1] .)

7. Some reasonable modifications of Theorem 6.1

By using a more simple argument than that in the proof of Theorem 6.1, we can
also prove the following

Theorem 7.1. If F is semi-cocyclic (pseudo-cocyclic) and S is a relation on X
such that both DS and RS are bounded, then

sup
z∈X2

‖F (z) ‖ ≤ 5 sup
z∈Sc

‖F (z) ‖
(

sup
z∈X2

‖F (z) ‖ ≤ 7 sup
z∈Sc

‖F (z) ‖
)
.

Hence, analogously to Corollary 6.2, we can also derive



10 Á. SZÁZ

Corollary 7.2. If f is a function of X to a Banach space Z and ε ≥ 0 such that
there exists a relation S on X such that both DS and RS are bounded and

‖ f(x+ y )− f(x)− f(y) ‖ ≤ ε

for all (x, y ) ∈ S c , then there exists a unique additive function g of X to Z such
that

‖ f(x)− g(x) ‖ ≤ 5 ε
(
‖ f(x)− g(x) ‖ ≤ 7 ε

)
.

for all x, y ∈ X.

Moreover, in addition to Theorems 6.1 and 7.1, we can also prove the following

Theorem 7.3. If F is pseudo-Cauchy (pseudo-cocyclic) and S is a relation on
X such that either DS or RS is bounded, then

sup
z∈X2

‖F (z) ‖ ≤ 5 sup
z∈Sc

‖F (z) ‖
(

sup
z∈X2

‖F (z) ‖ ≤ 7 sup
z∈Sc

‖F (z) ‖
)
.

Proof. As in the proof of Theorem 6.1, define

ε = sup
z∈S c

‖F (z) ‖ .

Then, in particular, we have ‖F (x, y) ‖ ≤ ε for all (x, y ) ∈ S c . ( Note that,
because of the boundedness conditions on X, DS and RS , now we again have
S 6= X 2 . Therefore, we can also state that 0 ≤ ε ≤ +∞ .)

Moreover, since either DS or RS is bounded, we can see that there exists r > 0
such that either

DS ⊆ Br(0) or RS ⊆ Br(0) .

( Namely, otherwise for any r > 0 we would have both DS 6⊆ Br(0) and RS 6⊆
Br(0) . Thus, both DS and RS would be unbounded.)

Therefore, we have either

S ⊆ DS ×RS ⊆ Br(0)×X or S ⊆ DS ×RS ⊆ X ×Br(0) .

Hence, we can infer that

S ⊆ Br(0)×X ∪ X ×Br(0) , and thus
(
Br(0)×X ∪ X ×Br(0)

)c ⊆ S c .

Moreover, by using some useful laws on complements, we can see that(
Br(0)×X ∪ X ×Br(0)

)c
=
(
Br(0)×X

)c∩ (X ×Br(0)
)c)c

= Br(0)c ×X ∩ X ×Br(0)c = Br(0)c ×Br(0)c =
(
Br(0)c

)2
.

Therefore, (
Br(0)c

)2
=
(
Br(0)×X ∪ X ×Br(0)

)c ⊆ S c .

Now, if x, y ∈ X such that ∦ (x, y ) ∦ > r holds with

∦ (x, y ) ∦ = ‖x ‖ ∧ ‖ y ‖ = min
{
‖x ‖ , ‖ y ‖

}
,

then we can note that ‖x ‖ > r and ‖ y ‖ > r , and thus x ∈ Br(0)c and
y ∈ Br(0)c . Therefore,

(x, y ) ∈
(
Br(0)c

)2 ⊆ S c , and thus ‖F (x, y) ‖ ≤ ε .
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This shows that there exists r > 0 such that ‖F (z) ‖ ≤ ε for all z ∈ X 2 with
∦ z ∦ > r . Hence, it is clear that

lim
∦z∦→+∞

‖F (z) ‖ = inf
r>0

sup
∦z∦>r

‖F (z ) ‖ ≤ ε .

Therefore, by Theorem 5.6, we have

‖F (z) ‖ ≤ 5 ε
(
‖F (z) ‖ ≤ 7 ε

)
for all z ∈ X 2. Thus, the required equalities are also true.

From this theorem, analogously to Corollary 6.2, we can also derive

Corollary 7.4. If f is a function of X to a Banach space Z and ε ≥ 0 such that
there exists a relation S on X such that either DS or RS is bounded and

‖ f(x+ y )− f(x)− f(y) ‖ ≤ ε

for all (x, y ) ∈ S c , then there exists a unique additive function g of X to Z such
that

‖ f(x)− g(x) ‖ ≤ 5 ε
(
‖ f(x)− g(x) ‖ ≤ 7 ε

)
.

for all x, y ∈ X.

Remark 7.5. Note that if η ≥ 0 and f is an arbitrary and g is an additive
function of X to Y such that

‖ f(x)− g(x) ‖ ≤ η

for all x ∈ X, then we can only state that

‖ f(x+ y )− f(x)− f(y) ‖ = ‖ f(x, y )− g(x+ y ) + g(x)− f(x) + g(y)− f(y) ‖
≤ ‖ f(x+ y )− g(x+ y ) ‖ + ‖ g(x)− f(x) ‖ + ‖ g(y)− f(y) ‖ ≤ 3 η

for all x, y ∈ X. Therefore, the corresponding particular case of Theorem 7.3 is
sharper than Corollary 7.4.

This clearly reveal that the corresponding theorems on restricted stability have
to split into two parts. The same idea is also apparent from the proofs of those
theorems.
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[18] M. Hosszú, Functional equations and problems of group extensions, Miskolci Nehézipari
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[42] Á. Száz, An instructive treatment of a generalization of Hyers’s stability theorem, In: Th. M.
Rassias and D. Andrica (Eds.), Inequalities and Applications, Cluj University Press, Cluj-

Napoca, Romania, 2008, 245–271.
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