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THE CLOSURE-INTERIOR GALOIS CONNECTION AND ITS
APPLICATIONS TO RELATIONAL EQUATIONS AND

INCLUSIONS

ÁRPÁD SZÁZ

Abstract. By using the closure–interior Galois connection and the box
product of relations, we show that the duals of some of our former theorems

on the relational equation R = G−1◦ S ◦ F and inclusion R ⊆ G−1◦ S ◦ F

can be easily derived from some simple basic facts on Galois connections.

To clarify the importance of this subject, we recall that a relation F on a
set X is called regular (normal) if F = F ◦S ◦ F

�
F = F ◦ S ◦ (F c)−1

�
for

some relation S on X. Note that here S may, for instance, be the identity
relation of X or the inverse relation of F . Thus, in particular, all idempotent

and non-mingled-valued relations are regular.

Moreover, a pair ( F , G) of relations is called properly (uniformly) mildly

continuous, with respect to the relations R and S , if R = G−1 ◦ S ◦ F�
R ⊆ G−1◦S ◦ F

�
. Thus, in particular the relation F is regular if and only if

the pair
�
F , F −1

�
is properly mildly continuous with respect to F and some

relation S . It is noteworthy that the largest such S is
�
F −1◦ F c ◦ F −1

�c
.

1. Introduction

In [50] , to have a common generalizations of some of the results of Schein [33],
Hardy and Petrich [16] , Xu, Liu and Luo [63, 64, 65] , Jiang, Xu, Cai and Han
[18, 19, 20] and Romano [28, 29, 30] , we have proved the following

Theorem 1.1. For any relations R on X to Y , F on X to Z, and G on Y
to W , with the notation

S =
(
G ◦Rc ◦ F −1

)c
,

the following assertions are equivalent :

(1) R = G−1 ◦ S ◦ F , (2) R ⊆ G−1 ◦ S ◦ F ,

(3) R = G−1 ◦ Ω ◦ F for some relation Ω on Z to W ,

(4) ∀ (x, y ) ∈ R : ∃ (z , w) ∈ Z×W : (x, y ) ∈ F −1(z)×G−1(w) ⊆ R ,
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2 Á. SZÁZ

(5) ∀ (x, y ) ∈ A : ∃ (z , w) ∈ Z×W :

(a) (x, z ) ∈ F , (y, w) ∈ G ,

(b) (s, z ) ∈ F , (t, w) ∈ G =⇒ (s, t) ∈ R .

Hint. To prove this, among others, for any x ∈ X and y ∈ Y , we defined

(F � G)(x, y ) = F (x)×G(y) .

Moreover, we showed that, for any relations U ⊆ X×Y and V ⊆ Y ×W , we have

(F � G)[U ] = G ◦ U ◦ F −1 and (F � G)−1 [V ] = G−1 ◦ V ◦ F .

Remark 1.2. To illustrate the above theorem, we can use the diagram :

X
F−−−−→ Z

R

y yS

Y
G−−−−→ W

Moreover, to show the appropriateness of Theorem 1.1, we can note that asser-
tions (1) and (2) are nothing else, but the definitions of the proper and uniform mild
continuities of the pair (F , G) with respect to the relations R and S , respectively.
( Concerning mild continuities, see [35, 36, 41, 58, 60] .)

In this respect, it is also worth mentioning that, from Theorem 1.1, by taking
Z = Y , W = X, R = F and G = F −1 , we can immediately derive the following
intrinsic characterizations of regular relations established first by Schein [33] and
Xu and Liu [63] .

Corollary 1.3. For any relation F on X to Y , with the notation

S =
(
F −1 ◦ F c ◦ F −1

)c
,

the following assertions are equivalent :

(1) F = F ◦ S ◦ F , (2) F ⊆ F ◦ S ◦ F ,

(3) F = F ◦ Ω ◦ F for some relation Ω on Y to X,

(4) ∀ (x, y ) ∈ F : ∃ (u, v ) ∈ X×Y : (x, y ) ∈ F −1 (v)× F (u) ⊆ F ,

(5) ∀ (x, y ) ∈ F : ∃ (u, v ) ∈ X×Y :

(a) (x, v ) ∈ F , (u, y ) ∈ F ;

(b) (s, v ) ∈ F , (u, t) ∈ F =⇒ (s, t) ∈ F .

Remark 1.4. To illustrate this corollary, we can use the diagram :

X
F−−−−→ Y

F

y yS

Y
F −1

−−−−→ X

Moreover, we can note that the relation F is regular if and only if the
pair

(
F , F −1

)
is properly or uniformly mildly continuous with respect to the

relations F and S .
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In the present paper, we shall show that, by using the box product F � G of
relations, a dual of Theorem 1.1 can be easily derived from some simple basic facts
on Galois connections between power sets.

For this, for any relation R on X to Y and sets A ⊆ X and B ⊆ Y , we define

FR(A) = clR−1(A) = R [A ] and GR(B ) = intR(B ) = clR
(
B c

)c
.

Moreover, we show that the functions FR and GR form an increasing Galois
connection between the posets P (X ) and P (Y ) .

Thus, in particular, by some basic theorems on Galois connections [56] , we can
at once state that if B ⊆ Y , then A = GR(B ) is the largest subset of X such
that FR(A) ⊆ B . Moreover, B = FR(A) for some A ⊆ X if and only if under
the notation ΨR = FR ◦GR we have B = ΨR(A) or equivalently B ⊆ ΨR(A) .

To keep the paper completely self-contained and make the reader popular with
our notations and methods, in the subsequent sections, we shall carefully list several
basic facts on relations, increasing functions and Galois connections.

The results presented in these preparatory sections may also be useful for those
who are not very much interested in relational equations and inclusions. However,
for the sake of brevity, the proofs of these results will be frequently omitted.

2. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊆ X 2, with X 2 = X×X, then we may simply say that F is a relation on X.
In particular, ∆X = {(x, x) : x ∈ X } is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
F (x) = { y ∈ Y : (x, y ) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F . If (x, y ) ∈ F , then we may also write x F y .
Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called

the domain and range of F . If in particular DF = X, then we say that F is a
relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x? and x ∗ y instead of ?(x) and ∗

(
(x, y )

)
.

If F is a relation on X to Y , then F =
⋃

x∈X {x}×F (x). Therefore, the values
F (x), where x ∈ X, uniquely determine F . Thus, a relation F on X to Y can
also be naturally defined by specifying F (x) for all x ∈ X.

For instance, the complement relation F c can be naturally defined such that
F c(x) = F (x)c = Y \ F (x) for all x ∈ X. Thus, we also have F c = X×Y \ F .
Moreover, it noteworthy that F c [A ]c =

⋂
a∈A F (a) for all A ⊆ X. ( See [50] .)

Quite similarly, the inverse relation F −1 can be naturally defined such that
F −1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y . Thus, we have F −1 [B ] = {x ∈ X :
F (x) ∩B 6= ∅} for all B ⊆ Y , and hence in particular DF = F −1 [Y ] .
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Moreover, if in addition G is a relation on Y to Z, then the composition relation
G ◦ F can be naturally defined such that (G ◦ F )(x) = G [F (x) ] for all x ∈ X.
Thus, we also have (G ◦ F ) [A ] = G

[
F [A ]

]
for all A ⊆ X.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
of F if f ⊆ F , i. e., f(x) ∈ F (x) for all x ∈ DF . Thus, by the Axiom of Choice,
every relation has a selection. Moreover, it is the union of its selections.

If F is a relation on X to Y and U ⊆ DF , then the relation F |U = F ∩(U×Y )
is called the restriction of F to U . Moreover, if F and G are relations on X to
Y such that DF ⊆ DG and F = G |DF , then G is called an extension of F .

For any relation F on X to Y , we may naturally define two set-valued functions,
F B of X to P (Y ) and F I of P (X ) to P (Y ) , such that F B(x) = F (x) for all
x ∈ X and F I(A) = F [A ] for all A ⊆ X.

Functions of X to P (Y ) can be identified with relations on X to Y . While,
functions of P (X ) to P (Y ) are more general objects than relations on X to Y .
They were briefly called corelations on X to Y in [52] .

Now, a relation R on X may be briefly defined to be reflexive if ∆X ⊆ R , and
transitive if R ◦ R ⊆ R . Moreover, R may be briefly defined to be symmetric if
R−1 ⊆ R , and antisymmetric if R ∩R−1 ⊆ ∆X .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For instance, for A ⊆ X, the Pervin relation RA = A2 ∪ Ac×X is a preorder
relation on X. ( See [47] .) While, for a pseudo-metric d on X and r > 0 , the
surrounding B d

r =
{
x ∈ X 2 : d (x1, x2) < r

}
is a tolerance relation on X.

Moreover, we may recall that if A is a partition of X, i. e., a family of pairwise
disjoint, nonvoid subsets of X such that X =

⋃
A , then SA =

⋃
A∈A A2 is an

equivalence relation on X, which can, to some extent, be identified with A .
According to algebra, for any relation R on X, we may naturally define

R 0 = ∆X , and Rn = R◦R n−1 if n ∈ N . Moreover, we may also naturally define
R∞ =

⋃∞
n=0 R

n . Thus, R∞ is the smallest preorder relation containing R [14] .
Now, in contrast to (F c )c = F and (F −1 )−1 = F , we have (R∞ )∞ = R∞ .

Moreover, analogously to (F c )−1 = (F −1 )c , we also have (R∞ )−1 = (R−1 )∞ .
Thus, in particular R−1 is also a preorder on X if R is a preorder on X.

3. Structures derived from a single relation

Notation 3.1. In this section, we shall assume that R is a relation on one set X
to another Y .

Definition 3.2. Under this assumption, for any x ∈ X and B ⊆ Y , we write

(1) x ∈ lbR (B ) if B ⊆ R(x) , (2) x ∈ intR (B ) if R(x) ⊆ B .

Remark 3.3. Thus, lbR and intR are relations on P(Y ) to X, which are called
the lower bound and interior relations induced by R , respectively.

Note that, because of our former observations, lbR and intR may also be
considered as functions of P(Y ) to P(X) , that is, corelations on Y to X.
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The relations lbR and intR are not independent of each other. Namely, by
using the notations Rc = X×Y \R and CY (B ) = B c = Y \B for all B ⊆ Y , we
can easily prove the following

Theorem 3.4. We have

(1) lbR = intRc ◦ CY , (2) intR = lbRc ◦ CY .

Proof. For any x ∈ X and B ⊆ Y , we have

x ∈ lbR (B ) ⇐⇒ B ⊆ R(x) ⇐⇒ R(x)c ⊆ B c ⇐⇒ Rc(x) ⊆ B c

⇐⇒ x ∈ intRc (B c) ⇐⇒ x ∈ intRc

(
CY (B )

)
⇐⇒ x ∈

(
lbRc ◦ CY

)
(B ) .

Therefore, lbR (B ) =
(
lbRc ◦ CY

)
(B ) for all B ⊆ Y , and thus (1) also holds.

Now, by writing Rc in place of R in (1), we can see that lbRc = intR ◦ CY .
Hence, by applying CY to both sides, we can already infer that lbRc ◦ CY = intR ,
and thus (2) also holds.

Definition 3.5. Now, in addition to Definition 3.2, we may also naturally define

(1) ubR = lbR−1 , (2) clR =
(
intR ◦ CY

)c .

Remark 3.6. Namely, thus for any A ⊆ X and y ∈ Y we have

y ∈ ubR(A) ⇐⇒ y ∈ lbR−1(A) ⇐⇒ A ⊆ R−1(y)

⇐⇒ ∀ x ∈ A : x ∈ R−1(y) ⇐⇒ ∀ x ∈ A : y ∈ R(x) ⇐⇒ ∀ x ∈ A : xR y .

Moreover, we can easily prove the following

Theorem 3.7. For any B ⊆ Y , we have

clR(B ) =
{
x ∈ X : R(x) ∩B 6= ∅

}
= R−1 [B ] .

Proof. For any x ∈ X, we have

x ∈ clR(B ) ⇐⇒ x ∈
(
intR ◦ CY

)c(B ) ⇐⇒ x ∈
(
intR ◦ CY

)
(B )c

⇐⇒ x /∈
(
intR ◦ CY

)
(B ) ⇐⇒ x /∈ intR

(
CY (B )

)
⇐⇒ x /∈ intR

(
B c

)
⇐⇒ R(x) 6⊆ B c ⇐⇒ R(x) ∩B 6= ∅ ⇐⇒ x ∈ R−1 [B ] .

Therefore, the required equalities are also true.

Later, by considering Galois connections, we shall see that several further
properties of the relations lbR , ubR , intR , and clR can be easily derived from
the following two simple theorems.

Theorem 3.8. For any A ⊆ X and B ⊆ Y , we have

A ⊆ lbR (B ) ⇐⇒ B ⊆ ubR (A) .

Proof. By the corresponding definitions, it is clear that

A ⊆ lbR (B ) ⇐⇒ ∀ x ∈ A : x ∈ lbR(B )
⇐⇒ ∀ x ∈ A : ∀ y ∈ B : xR y ⇐⇒ ∀ y ∈ B : ∀ x ∈ A : xR y

⇐⇒ ∀ y ∈ B : y ∈ ubR (A) ⇐⇒ B ⊆ ubR (A) .
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Remark 3.9. Note that each of the above conditions is equivalent to the inclusion
A×B ⊆ R , which can also be naturally written in the shorter form ARB .

Thus, in particular, for any two subsets A and B of a poset (partially ordered
set) X, we may naturally write A ≤ B if x ≤ y for all x ∈ A and y ∈ B .

However, this extended inequality is, in general, neither reflexive nor antisym-
metric. Namely, A 6≤ A for all A ⊆ X with card(A) > 1 , and moreover ∅ ≤ B
and B ≤ ∅ for all B ⊆ X.

Theorem 3.10. For any A ⊆ X and B ⊆ Y , we have

A ⊆ intR (B ) ⇐⇒ clR−1(A) ⊆ B .

Proof. If A ⊆ intR(B ) holds, then for each x ∈ A we have x ∈ intR(B ) , and
thus R(x) ⊆ B . Hence, by using that R [A ] =

⋃
x∈A R(x) , we can already infer

that R [A ] ⊆ B . Thus, by Theorem 3.7, clR−1(A) ⊆ B also holds.
Conversely, if clR−1(A) ⊆ B holds, then by Theorem 3.7 we have R [A ] ⊆ B .

Hence, by using that R [A ] =
⋃

x∈A R(x) , we can already infer that R(x) ⊆ B ,
and thus x ∈ intR(B ) for all x ∈ A . Therefore, A ⊆ intR(B ) also holds.

Remark 3.11. Note that, by Theorem 3.4, the latter two theorems are not
independent of each other. However, because of their importance, it seemed now
desirable to give them independent proofs.

Definition 3.12. Now, by using our former definitions, we may also naturally
define

(1) ER =
{
B ⊆ Y : intR(B ) 6= ∅

}
, (2) DR =

{
B ⊆ Y : clR(B ) = X

}
,

(3) LR =
{
B ⊆ Y : lbR(B ) 6= ∅

}
, (4) UR =

{
A ⊆ X : ubR(A) 6= ∅

}
.

Remark 3.13. The families ER and DR are called the R–fat and R–dense subsets
of Y , respectively.

While, the members of the families LR and UR are called the lower and upper
R–bounded subsets of Y and X, respectively.

By using the corresponding definitions, we can easily prove the following

Theorem 3.14. We have

(1) ER =
{
E ⊆ Y : E c /∈ DR

}
=

{
E ⊆ Y : ∀ D ∈ DR : E ∩D 6= ∅

}
,

(2) DR =
{
D ⊆ Y : D c /∈ ER

}
=

{
D ⊆ Y : ∀ E ∈ ER : E ∩D 6= ∅

}
.

Remark 3.15. Moreover, by the corresponding definitions, it is clear that

(1) LR = UR−1 , (2) UR = LR−1 .

Concerning the families LR and LR, for instance, we can also easily prove

Theorem 3.16. We have

(1) LR = P(Y ) \ DRc , (2) UR = P(X) \ D(Rc)−1 .

Proof. To prove (1), note that by the corresponding definitions and Theorems 3.4
and 3.14, for any B ⊆ Y , we have

B ∈ LR ⇐⇒ lbR(B ) 6= ∅ ⇐⇒
(
intRc ◦ CY

)
(B ) 6= ∅

⇐⇒ intRc

(
Bc

)
6= ∅ ⇐⇒ B c ∈ ERc ⇐⇒ B /∈ DRc ⇐⇒ B ∈ P(Y )\DRc .



THE CLOSURE–INTERIOR GALOIS CONNECTION 7

Remark 3.17. In connection with (2), by using Definition 3.12 and Theorems 3.7
and 3.14, we can also easily prove that

(1) DR−1 =
{
A ⊆ X : Y = R [A ]

}
, (2) ER−1 =

{
A ⊆ X : Y 6= R [Ac ]

}
.

4. Some further structures derived from a single relation

Notation 4.1. In the present and the next section, by specializing our former
Notation 3.1, we shall assume that R is a relation on a set X.

Remark 4.2. Note that if F is a relation on one set X to another Y , then F is
also a relation on X ∪ Y . However, this view of F is usually quite unnatural.

Definition 4.3. Now, by using our former definitions, for any A ⊆ X, we may
also naturally define

(1) minR (A) = A ∩ lbR(A) , (2) maxR (A) = A ∩ ubR(A) ,

(3) infR (A) = maxR

(
lbR(A)

)
, (4) supR (A) = minR

(
ubR(A)

)
.

Thus, we can at once state the following

Theorem 4.4. For any A ⊆ X, we have

(1) infR(A) = lbR(A) ∩ ubR

(
lbR(A)

)
,

(2) supR(A) = ubR(A) ∩ lbR

(
ubR(A)

)
.

Now, by the corresponding definitions, it is clear that we also have

Theorem 4.5. For any A ⊆ X, we have

(1) minR(A) = maxR−1(A) , (2) maxR(A) = minR−1(A) ,

(3) infR (A) = supR−1(A) , (4) supR (A) = infR−1(A) .

Moreover, by using Theorem 3.8, we can also easily prove the following two
theorems.

Theorem 4.6. For any A ⊆ X, we have

(1) minR(A) = A ∩ infR(A) , (2) maxR(A) = A ∩ supR(A) .

Proof. To prove (1), note that, by Theorem 4.4 and Definition 4.3, we have

A ∩ infR(A) = A ∩ lbR(A) ∩ ubR

(
lbR (A)

)
= minR(A) ∩ ubR

(
lbR (A)

)
.

Moreover, by Definition 4.3, we have minR(A) ⊆ A . And, by Theorem 3.8, we
have A ⊆ ubR

(
lbR (A)

)
. Therefore, minR(A) ⊆ ubR

(
lbR (A)

)
.

Theorem 4.7. For any A ⊆ X, we have

(1) infR (A) = supR

(
lbR(A)

)
, (2) supR(A) = infR

(
ubR(A)

)
.

Proof. To prove (1), note that by Definition 4.3 and Theorem 4.6, we have

infR (A) = maxR

(
lbR(A)

)
= lbR(A) ∩ supR

(
lbR(A)

)
.

Moreover, by Theorem 3.8, we have A ⊆ ubR

(
lbR(A)

)
, whence it is clear that

lbR

(
ubR

(
lbR(A)

))
⊆ lbR(A) . Therefore, by Theorem 4.4, we also have

supR

(
lbR(A)

)
= ubR

(
lbR(A)

)
∩ lbR

(
ubR

(
lbR(A)

))
⊆ lbR(A) .
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Remark 4.8. Note that, by Theorem 3.8, lbR(A) ⊆ lbR

(
ubR

(
lbR(A)

))
also

holds. Therefore, the corresponding equality is also true.

Now, having in mind the notion of a complete poset [3, p. 6] , we may also
naturally introduce the following

Definition 4.9. The set X, considered in Notation 4.1, is called infR–complete
( supR–complete) if infR(A) 6= ∅

(
supR(A) 6= ∅

)
for all A ⊆ X.

Remark 4.10. Quite similarly, having in mind the notion of a well-ordered set [3,
p. 180], the set X may be naturally called minR–complete ( maxR–complete) if
minR(A) 6= ∅

(
maxR(A) 6= ∅

)
for all A ⊆ X with A 6= ∅ .

Now, as an immediate consequence of Theorem 4.7, we can also state

Theorem 4.11. The following assertions are equivalent :

(1) X is infR–complete , (2) X is supR–complete .

Remark 4.12. Some similar equivalences of several modified inf– and sup–completeness
properties of generalized ordered sets have been established in [6] and [5] .

Definition 4.13. In addition Definition 3.12, we may also naturally define

(1) TR =
{
A ⊆ X : A ⊆ intR(A)

}
, (2) FR =

{
A ⊆ X : clR(A) ⊆ X

}
,

(3) LR =
{
A ⊆ X : A ⊆ lbR(A)

}
, (3) UR =

{
A ⊆ X : A ⊆ ubR(A)

}
.

Remark 4.14. The members of the families TR and FR are called the
R–open and R–closed subsets of X, respectively.

While, the members of the family LR and UR are called the self lower and
upper R–bounded subsets of X, respectively.

Thus, we can at once state the following

Theorem 4.15. We have

(1) TR =
{
A ⊆ X : Ac ∈ FR

}
, (2) FR =

{
A ⊆ X : Ac ∈ TR

}
.

Moreover, we can also easily prove the following two theorems.

Theorem 4.16. For any A ⊆ X, the following assertions are equivalent :

(1) A ∈ LR , (2) A ⊆ minR(A) , (3) A ⊆ infR(A) ,

(4) A ∈ UR , (5) A ⊆ maxR(A) , (6) A ⊆ supR(A) .

Proof. By the corresponding definitions, it is clear that

A ∈ LR ⇐⇒ A ⊆ lbR(A) ⇐⇒ A ⊆ A ∩ lbR(A) ⇐⇒ A ⊆ minR(A) .

Moreover, by using Theorems 3.8 and 4.4, we can also easily see that

A ∈ LR ⇐⇒ A ⊆ lbR(A) ⇐⇒ A ⊆ lbR(A) ∩ ubR

(
lbR(A)

)
⇐⇒ A ⊆ infR(A) .

Therefore, assertions (1), (2), and (3) are equivalent.
The remaining equivalences is now quite obvious by Theorems 3.8 and 4.5.

Namely, by these theorems, we have LR = UR and UR = LR−1 .

Theorem 4.17. We have

(1) LR =
{

minR(A) : A ⊆ X
}

, (2) LR =
{

maxR(A) : A ⊆ X
}

.
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Proof. To prove (1), note that if V ∈ LR , then by Theorem 4.16, we have
V ⊆ minR(V ) , and thus also V = minR(V ) . Therefore, V is in the family
A = {minR(A) : A ⊆ X } .

Conversely, if V ∈ A , then there exists A ∈ A such that V = minR(A) .
Hence, by definition, it follows that V ⊆ A and V ⊆ lbR(A) . Now, we can also
see that lbR(A) ⊆ lbR(V ) . Therefore, V ⊆ lbR(V ) , and thus V ∈ LR also
holds.

5. The importance of reflexivity, transitivity, and antisymmetry

Most of the subsequent theorems have already been proved in [57] . Some of the
proofs will only be included here for the reader’s convenience.

Theorem 5.1. The following assertions are equivalent :

(1) R is reflexive on X,

(2) x ∈ lbR(x) for all x ∈ X,

(3) x ∈ ubR(x) for all x ∈ X,

(4) A ⊆ clR(A) for all A ⊆ X,

(5) intR(A) ⊆ A for all A ⊆ X,

(6) intR

(
ubR(x)

)
⊆ ubR(x) for all x ∈ X.

Proof. Note that ubR(x) = ubR

(
{x}

)
= R(x) for all x ∈ X. Therefore, (1) and

(3) are equivalent. Moreover, if A ⊆ X and x ∈ intR(A), then R(x) ⊆ A , and
thus ubR(x) ⊆ A . Therefore, if (3) holds, then x ∈ A , and thus (5) also holds.

Furthermore, we can note that (5) trivially implies (6). Moreover, for any x ∈ X,
we have R(x) = ubR(x) ⊆ ubR(x) , and hence x ∈ intR

(
ubR(x)

)
. Therefore, (6)

also implies (3).
Thus, we have proved that (1), (3), (5), and (6) are equivalent. Moreover, by

using Definition 3.5, we can also easily see that (2) is equivalent to (3), and (4) is
equivalent to (5). However, the equivalence of (1) to (4) is even more obvious from
Theorem 3.7.

Now, because of this theorem and Definition 4.13, we can also state

Corollary 5.2. If R is reflexive on X, then

(1) TR =
{
A ⊆ X : A = intR(A)

}
, (2) FR =

{
A ⊆ X : A = clR(A)

}
.

Theorem 5.3. The following assertions are equivalent :

(1) R is transitive ,

(2) ubR(x) ∈ TR for all x ∈ X,

(3) clR(A) ∈ FR for all A ⊆ X,

(4) intR(A) ∈ TR for all A ⊆ X,

(5) intR

(
ubR(x)

)
∈ TR for all x ∈ X,

(6) x ∈ intR

(
intR

(
ubR(x)

))
for all x ∈ X.
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Proof. If x ∈ X and (1) holds, then for any y ∈ ubR(x) we have

R(y) ⊆ R [ ubR(x) ] = R [R(x) ] = (R ◦R )(x) ⊆ R(x) = ubR(x) ,

and thus y ∈ intR

(
ubR(x)

)
. Therefore, ubR(x) ⊆ intR

(
ubR(x)

)
, and thus (2)

also holds.
While, if A ⊆ X, then for any x ∈ intR(A) we have R(x) ⊆ A , and thus

ubR(x) ⊆ A . Hence, we can infer that intR

(
ubR(x)

)
⊆ intR(A) . Moreover, if (2)

holds, then ubR(x) ⊆ intR

(
ubR(x)

)
. Therefore, R(x) = ubR(x) ⊆ intR(A) , and

thus x ∈ intR

(
intR(A)

)
. This shows that intR(A) ⊆ intR

(
intR(A)

)
, and thus

(4) also holds.
Clearly, (4) implies (5). Moreover, if x ∈ X and (5) holds, then by the corres-

ponding definitions it is clear that

x ∈ intR

(
R(x)

)
= intR

(
ubR(x)

)
⊆ intR

(
intR

(
ubR(x)

))
,

and thus (6) also holds.
While, if (6) holds, then for any x ∈ X we have

R(x) ⊆ intR

(
ubR(x)

)
= intR

(
R(x)

)
.

Therefore, for any y ∈ R(x), we have y ∈ intR

(
R(x)

)
, and thus R(y) ⊆ R(x) .

Hence, we can see that (R ◦ R )(x) = R [R(x) ] ⊆ R(x) . Therefore, R ◦ R ⊆ R ,
and thus (1) also holds.

Now, to complete the proof, it remains to note only that by Definition 3.5 and
Theorem 3.14 assertions (2) and (3) are also equivalent.

Now, because of this theorem and Corollary 5.2, we can also state

Corollary 5.4. If R is a preorder on X, then

(1) TR =
{

intR(A) : A ⊆ X
}

, (2) FR =
{

clR(A) : A ⊆ X
}

.

Moreover, by using Theorems 5.1 and 5.3, and some set theoretic properties of
the families of TR FR , we can also easily prove the following two theorems.

Theorem 5.5. The following assertions are equivalent :

(1) R is a preorder on X,

(2) intR(A) =
⋃

TR ∩ P(A) for all A ⊆ X,

(3) clR(A) =
⋂

FR ∩ P−1(A) for all A ⊆ X.

Theorem 5.6. If R is a preorder on X, then for any A ⊆ X, we have

(1) A ∈ ER if and only if B ⊆ A for some B ∈ TR \ {∅} ,

(2) A ∈ DR if and only if A \B 6= ∅ for all B ∈ FR \ {X } .

However, it is now more important to note that, by using the corresponding
definitions and Theorem 4.17, we can also easily prove the following

Theorem 5.7. If in particular R is reflexive on X, then the following assertions
are equivalent :

(1) R is antisymmetric , (2) card (A) ≤ 1 for all A ∈ LR ,

(3) card(Φ(A)) ≤ 1 for all A ⊆ X and Φ ∈ {minR , maxR , infR , supR}.
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Proof. To prove the implication (2) =⇒ (1), note that

LR =
{
A ⊆ X : ∀ x, y ∈ A : xR y

}
.

Thus, if x, y ∈ X such that x ≤ y and y ≤ x , then because of the assumptions
xRx and y R y , we also have {x, y} ∈ LR . Therefore, if (2) holds, then we
necessarily have x = y , and thus (1) also holds.

Remark 5.8. Note that the really important implications (1) =⇒ (2) =⇒ (3) do
not require R to be reflexive.

6. A few basic facts on increasing functions

Definition 6.1. According to [43] , an ordered pair X (≤) =
(
X, ≤ ) , consisting

of a set X and a relation ≤ on X, is called a goset (generalized ordered set).

Remark 6.2. Now, the goset X (≤) may, for instance, be naturally called reflexive
if the relation ≤ is reflexive on X.

Moreover, it may be naturally called a proset (preordered set) if ≤ is a preorder
on X. Thus, a poset is an antisymmetric proset.

Examples 6.3. Note that every set X is a poset with the identity relation ∆X .
And, X is a proset with the universal relation X 2. Moreover, the power set P (X )
is a poset with set inclusion ⊆ .

In this respect, it is also worth mentioning that if in particular X (≤) is a goset,
and for any A, B ⊆ X we define A ≤ B if x ≤ y for all x ∈ A and y ∈ B , then
P (X) is also a goset with this extended inequality.

Moreover, if X (≤) is a goset and Y ⊆ X, then by taking ≤Y =≤ ∩Y 2 we can
also get a goset Y (≤Y ). This subgoset inherits several properties of the original
goset. Thus, for instance, every family of sets is a poset with set inclusion.

However, it is now more important to note that if X (≤ ) is a goset, and for
instance X ′ = X and ≤ ′=≤−1 , then X ′ (≤ ′ ) is also a goset. This dual goset also
inherits several properties of the original goset. Thus, for instance, every family of
sets is also a poset with the reverse set inclusion ⊇ .

Remark 6.4. If X (≤ ) is a goset, then in the sequel we shall simply write X
instead of X (≤ ) .

Moreover, for instance, we shall also simply write ub and int instead of lb≤
and int≤ , respectively. However, sometimes the ground set X has to be indicated.

Definition 6.5. A function f of one goset X to another Y is called increasing if
u ≤X v implies f(u) ≤Y f(v) for all u, v ∈ X.

Remark 6.6. Now, the function f may be briefly defined to be decreasing if it is
increasing as a function of X to Y ′ . Thus, the study of decreasing functions can
be traced back to that of the increasing ones.

Concerning increasing functions, in [57] we have prove the following theorem
which shows that increasingness is also a continuity property [58] .

Theorem 6.7. For a function f of one goset X to another Y , the following
assertions are equivalent :

(1) f is increasing ,
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(2) f [ clX(A) ] ⊆ clY
(
f [A ]

)
for all A ⊆ X,

(3) f [ lbX(A) ] ⊆ lbY

(
f [A ]

)
for all A ⊆ X,

(4) f [ ubX(A) ] ⊆ ubY

(
f [A ]

)
for all A ⊆ X,

(5) clX
(
f −1 [B ]

)
⊆ f −1 [ clY (B ) ] for all B ⊆ Y ,

(6) f −1 [ intY (B ) ] ⊆ intX

(
f −1 [B ]

)
for all B ⊆ Y .

Proof. To prove the implication (1) =⇒ (2), note that if A ⊆ X and
y ∈ f [ clX(A) ] , then there exists x ∈ clX(A) such that y = f(x) . Thus, by
Theorem 3.7, we have ≤X (x) ∩ A 6= ∅ . Therefore, there exists a ∈ A such that
a ∈≤X (x) , and thus x ≤X a . Hence, if (1) holds, we can infer that f(x) ≤Y f(a) .
Therefore, y ≤Y f(a) , and thus f(a) ∈≤Y (y) . Hence, since f(a) ∈ f [A ] , we
can already infer that ≤Y (y) ∩ f [A ] 6= ∅. Therefore, by Theorem 3.7, we have
y ∈ clY

(
f [A ]

)
, and thus (2) also holds.

From this theorem, by using Definitions 3.12 and 4.13, we can easily derive the
following two corollaries.

Corollary 6.8. If f is an increasing function of one goset X to another Y , then

(1) A ∈ LX implies f [A ] ∈ LY , (2) A ∈ UX implies f [A ] ∈ UY ,

(3) A ∈ LX implies f [A ] ∈ LY , (4) A ∈ UX implies f [A ] ∈ UY ,

(5) B ∈ TY implies f −1 [B ] ∈ TX , (6) A ∈ FY implies f −1 [B ] ∈ FX .

Corollary 6.9. If f is an increasing function of one goset X onto another Y ,
then

(1) A ∈ DX implies f [A ] ∈ DY , (2) B ∈ EY implies f −1 [B ] ∈ EX .

Now, by using our former results, we can also easily prove the following

Theorem 6.10. For a function f of a goset X to a proset Y , the following
assertions are equivalent :

(1) f is increasing ,

(2) B ∈ TY implies f −1 [B ] ∈ TX , (3) B ∈ FY implies f −1 [B ] ∈ FX .

However, it is now more important to note that, in addition to Theorem 6.7, we
can also prove the following

Theorem 6.11. For a function f of a reflexive goset X to an arbitrary one Y ,
the following assertions are equivalent :

(1) f is increasing ,

(2) f [maxX(A) ] ⊆ ubY

(
f [A ]

)
for all A ⊆ X,

(3) f [maxX(A) ] ⊆ maxY

(
f [A ]

)
for all A ⊆ X.

Proof. If (1) holds, then by Theorem 6.7, for any A ⊆ X, we have

f [maxX(A) ] = f [A ∩ ubX(A) ] ⊆ f [A ] ∩ f [ ubX(A) ]

⊆ f [A ] ∩ ubY

(
f [A ]

)
= maxY

(
f [A ]

)
.

Therefore, (3) also holds even if X is not assumed to be reflexive.
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Thus, since the implication (3) =⇒ (2) trivially hold, we need only show that
(2) also implies (1). For this, note that if u, v ∈ X such that u ≤ v , then by
taking A = {u, v} and using the reflexivity of X we can see that v ∈ ubX(A) ,
and thus v ∈ A ∩ ubX(A) = maxX(A) . Hence, if (2) holds, we can infer that

f (v ) ∈ f [maxX(A) ] ⊆ ubY

(
f [A ]

)
= ubY

(
{ f (u) , f (v) }

)
.

Thus, in particular f(u) ≤ f(v) , and thus (1) also holds.

From this theorem, by using Theorems 4.5 and 4.4, we can immediately derive

Corollary 6.12. If f is a function on a reflexive goset X to an arbitrary one Y
such that

f [ supX(A) ] ⊆ supY

(
f [A ]

)
for all A ⊆ X, then f is already increasing.

Proof. Namely, by the above assumption and Theorems 4.7 and 4.4, we have

f [maxX(A) ] ⊆ f [ supX(A) ] ⊆ supY

(
f [A ]

)
⊆ ubY

(
f [A ]

)
.

for all A ⊆ X. Thus, Theorem 6.11 can be applied.

Remark 6.13. Note that in Theorem 6.11, and thus also in Corollary 6.12, we
may restrict ourselves to the particular case card(A) ≤ 2 .

Finally, we note that, from Theorem 6.7, we can also immediately derive

Theorem 6.14. If f is an increasing function of one goset X to another Y , then
for any A ⊆ X we have

lbY

(
ubY

(
f [A ]

))
⊆ lbY (f [ ubX(A)] ) .

Moreover, by using Theorem 6.7, we can also easily prove the following

Theorem 6.15. If f is an increasing function of one sup-complete, antisymmetric
goset X to another Y , then for any A ⊆ X we have

supY

(
f [A ]

)
≤Y f

(
supX(A)

)
.

Proof. If α = supX(A) , then by Theorems 5.7 and 4.4, and the usual identi-
fication of singletons with their elements, we also have α ∈ ubX(A) , and thus
f(α) ∈ f [ ubX(A)] . Hence, by using Theorem 6.7, we can already infer that
f(α) ∈ ubY

(
f [A ]

)
.

While, if β = supY

(
f [A ]

)
, then by Theorems 5.7 and 4.4, and the usual

identification of singletons with their elements, we also have β ∈ lbY

(
ubY

(
f [A ]

))
.

Hence, by using that f(α) ∈ ubY

(
f [A ]

)
, we can already infer that β ≤Y f(α) ,

and thus the required inequality is also true.

7. A few basic facts on closure operations

The importance of increasing functions in algebra lies mainly in the extensive
theory of closure operations and Galois connections. ( See [3] and [9] .)
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Definition 7.1. For an unary operation ϕ on a goset X, we say that :

(1) ϕ is extensive if ∆X ≤ ϕ ,

(2) ϕ is upper idempotent if ϕ ≤ ϕ2 ,

(3) ϕ is upper involutive if ∆X ≤ ϕ2 .

( Note that, by definition, the latter inequality in a detailed form means only
that ∆X(x) ≤ ϕ2(x) , i. e., x ≤ ϕ

(
ϕ(x)

)
for all x ∈ X.)

Remark 7.2. Now, the operation ϕ may be briefly called intensive, lower idempo-
tent, and lower involutive if it is extensive, upper idempotent, and upper involutive
as an operation on X ′, respectively. Thus, the study of former ones can be traced
back to the latter ones.

In this respect, we can also easily establish the following theorem which shows
that extensivity is a more fundamental notion than idempotency and involutiveness.

Theorem 7.3. For an unary operation ϕ on a goset X, the following assertions
hold:

(1) ϕ is upper involutive if and only if ϕ2 is extensive ,

(2) ϕ is upper idempotent if and only if ϕ |ϕ [X] is extensive .

Corollary 7.4. An extensive operation ϕ on a goset X is upper idempotent.

The importance of extensivity is also apparent from the next theorem of [57] .

Theorem 7.5. If ϕ is a strictly increasing operation on a min–complete, anti-
symmetric goset X, then ϕ is extensive.

Proof. For this, note that if ϕ is not extensive, then A = {x ∈ X : x 6≤ ϕ(x)} 6= ∅ ,
and thus min(A) 6= ∅ . Therefore, by Theorem 5.7, we have a = min(A) for some
a ∈ X. Moreover, to get a contradiction, note that now, for any u, v ∈ X, we
have u 6≤ v if and only if v < u in the sense that v ≤ u and v 6= u .

Remark 7.6. Furthermore, note also that a function f of one goset X to another
Y is called strictly increasing if u < v implies f(u) < f(v) for all u, v ∈ X.

Thus, an injective, increasing function f of one goset X to another Y is strictly
increasing. Therefore, as a useful consequence of Theorem 7.5, we can also state

Corollary 7.7. If ϕ is an injective, increasing operation on a min-complete,
antisymmetric goset X, then ϕ is extensive.

Remark 7.8. The importance of the latter results lies mainly in the fact that if ϕ
is an extensive operation an antisymmetric goset X, then each maximal element
of X is a fixed point of ϕ in the sense that ϕ(x) = x .

This fact, in the context of posets, was already strongly stressed by Brøndsted
[7] . Note that now an element u of a goset X is rather called maximal if u ≤ v
implies v ≤ u . However, this is equivalent to v = u if X is antisymmetric.

Definition 7.9. For an unary operation ϕ on a goset X, we say that :

(1) ϕ is an involution if its increasing and both upper and lower involutive ,

(2) ϕ is a projection if it is increasing and both upper and lower idempotent ,

(3) ϕ is a closure (interior) operation if it is an extensive (intensive) projection .
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Remark 7.10. Thus, ϕ is an interior operation on X if and only if ϕ is a closure
on X ′. Therefore, the study of interior operations can be traced back to that of
the closure ones.

Concerning closure operations, we can easily prove the following

Theorem 7.11. If ϕ is a closure operation on an inf-complete, antisymmetric
goset X, then for any A ⊆ X we have

inf
(
ϕ [A ]

)
= ϕ

(
inf

(
ϕ [A ]

))
.

Proof. Now, by the dual of Theorem 6.15, we have ϕ
(
inf (A)

)
≤ inf

(
ϕ [A ]

)
.

Hence, by writing ϕ [A ] in place of A , we can see that

ϕ
(
inf

(
ϕ [A ]

))
≤ inf (ϕ [ϕ [A ] ] ) .

Moreover, by using the antisymmetry of X, we can see that ϕ is now idempotent.
Therefore, ϕ [ϕ [A ] ] = (ϕ ◦ ϕ) [A ] = ϕ2 [A ] = ϕ [A ] . Thus, we actually have

ϕ
(
inf

(
ϕ [A ]

))
≤ inf (ϕ [A ] ) .

Moreover, by extensivity of ϕ , the converse inequality is also true. Thus, by the
antisymmetry of X, the required equality is also true.

Corollary 7.12. If ϕ is as in Theorem 7.11, then for any A ⊆ ϕ [X ] we have

inf
(
A) = ϕ

(
inf(A)

)
.

Proof. Namely, if a ∈ A , then by using A ⊆ ϕ [X ] and ϕ2 = ϕ , we can easily
see that ϕ(a) = a . Thus, ϕ [A ] = A also holds.

Corollary 7.13. If ϕ is as in Theorem 7.11 and Y = ϕ [X ] , then for any A ⊆ Y
we have

infY (A) = infX(A) .

Proof. Namely, if α = infX(A) , then by Corollary 7.12 we have α = ϕ(α) .
Therefore, α ∈ ϕ [X ] , and thus α ∈ Y also holds.

Hence, by using theorem 4.11, we can immediately derive

Corollary 7.14. If ϕ is as in Theorem 7.11, then the subgoset Y = ϕ [A ] is also
complete.

Remark 7.15. Note that now, for any x ∈ X we have x ∈ Y if and only if
ϕ(x) ≤ x . Therefore, Y is just the family of all ”ϕ–closed elements” of X.

In [57] , in addition to Theorem 7.11 and Corollary 7.12, we have also proved
the following two theorems.

Theorem 7.16. If ϕ is a closure operation on a sup-complete, transitive, and
antisymmetric goset X, then for any A ⊆ X we have

ϕ
(
sup(A)

)
= ϕ

(
sup

(
ϕ [A ]

))
.

Theorem 7.17. If ϕ is as in Theorem 7.16 and Y = ϕ [X ] , then for any A ⊆ Y
we have

supY (A) = ϕ
(
supX(A)

)
.
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Remark 7.18. Unfortunately, the latter theorem cannot be derived from the
former one.

From Theorem 7.16, we can only infer that, for any A ⊆ X, the equalities

(1) ϕ
(
sup(A)

)
= sup

(
ϕ [A ]

)
, (2) sup

(
ϕ [A ]

)
= ϕ

(
sup

(
ϕ [A ]

))
are equivalent.

8. The order and interior relations derived from a function

Notation 8.1. In this section, we shall assume that f is a function on a set X
to a goset Y .

Definition 8.2. Under this assumption, for any u, v ∈ X and y ∈ Y , we write :

(1) v ∈ Ordf (u) if f(u) ≤ f(v) , (2) u ∈ Intf (y) if f(u) ≤ y .

Remark 8.3. Thus, Ordf is a relation on X and Intf is a relation on Y to X.
These relations will be called the natural order and proximal interior induced by f ,
respectively.

Note that if ϕ is a function of Y to itself, then for any y ∈ Y we have ϕ(y) ≤ y
if and only if y ∈ Intϕ(y) . Therefore, if ϕ is a closure-like operation on Y , then
y is ”ϕ–closed” if and only if it is ”proximally ϕ–open”.

The relations Ordf and Intf are again not independent of each other. Namely,
by using the corresponding definitions, we can easily prove the following

Theorem 8.4. We have

Ordf =
(
Intf ◦ f

)−1 = f −1◦ Int−1
f .

Proof. By the corresponding definitions, it is clear that

v ∈ Ordf (u) ⇐⇒ f(u) ≤ f(v) ⇐⇒ u ∈ Intf

(
f(v)

)
⇐⇒ u ∈

(
Intf ◦ f

)
(v) ⇐⇒ u ∈

(
Intf ◦ f

)−1(v)

for all u, v ∈ X. Therefore, Ordf (v) =
(
Intf ◦ f

)−1(v) for all v ∈ X, and thus
the equality Ordf =

(
Intf ◦ f

)−1 is also true.

Moreover, we can also easily prove the following

Theorem 8.5. We have

(1) Intf (y) = f −1 [ lb(y) ] for all y ∈ Y ,

(2) Int−1
f (x) = ub

(
f(x)

)
for all x ∈ X.

Proof. If y ∈ Y , then by the corresponding definitions and the usual identifications
of singletons with their elements, for any x ∈ X, we have

x ∈ Intf (y) ⇐⇒ f(x) ≤ y ⇐⇒ f(x) ∈ lb(y) ⇐⇒ x ∈ f −1
[
lb(y)

]
.

Therefore, (1) is true. The proof of (2) is similarly simple.

Now, as an immediate consequence of the above theorems, we can also state

Corollary 8.6. For any x ∈ X, we have

Ord−1
f (x) = Intf

(
f(x)

)
= f −1

[
lb(f(x)

)]
.
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Remark 8.7. Moreover, it is noteworthy that, for any y ∈ Y , we also have

y ∈ ub
(
f [ Intf (y) ]

)
.

Namely, by the definition of Intf , for every x ∈ Intf (y) , we have f (x) ≤ y .

Concerning the relations Ordf and Intf , we can also easily prove the following
two theorems.

Theorem 8.8. Ordf is the largest relation on X making f to be increasing.

Proof. Namely, under the notation ≤f= Ordf , for any u, v ∈ X, we have u ≤f v
if and only if f(u) ≤ f(v) .

Therefore, if ≤ is a relation on X making f to be increasing, then u ≤ v
implies f(u) ≤ f(v) implies u ≤f v for all u, v ∈ X. Therefore, ≤⊆≤f , and
thus ≤⊆ Ordf is also true.

Remark 8.9. Note that if in particular Y is a proset, then Ordf is a preorder
on X. While, Ordf is partial order on X if and only if f is injective and Y is a
poset.

Theorem 8.10. If R is a relation on X to Y and

F (A) = R [A ]

for all A ⊆ X, then for any B ⊆ Y we have

intR(B ) =
{
x ∈ X : {x} ∈ IntF (B )

}
.

Proof. By the corresponding definitions, for any x ∈ X, we have

{x} ∈ IntF (B ) ⇐⇒ F
(
{x}

)
⊆ B ⇐⇒ R

[
{x}

]
⊆ B

⇐⇒ R(x) ⊆ B ⇐⇒ x ∈ intR(B ) .

Remark 8.11. Therefore, if F is a function of P(X) to Y , then for any x ∈ X
and y ∈ Y we may naturally write x ∈ intF (y) if {x} ∈ IntF (y) .

Thus, the assertion of the above theorem can be briefly expressed by writing
that intR = intRI . ( Note that now, in addition to F (A) = RI(A) , we also
have F (A) = clR−1(A) for all A ⊆ X.)

However, it is now more important to note that, concerning the relation Intf ,
we can also prove the following

Theorem 8.12. If in particular X is also a goset and

f [ sup (A) ] ⊆ lb
(
ub

(
f [A ]

))
for all A ⊆ X, then for any y ∈ Y we have

max
(
Intf (y)

)
= sup

(
Intf (y)

)
.

Proof. By Theorem 4.6, it is enough to show only that, for any y ∈ Y ,

sup
(
Intf (y)

)
⊆ Intf (y) .

For this, note that if x ∈ sup
(
Intf (y)

)
, then by the assumed property of f

f(x) ∈ f
[
sup

(
Intf (y)

)]
⊆ lb

(
ub

(
f [ Intf (y) ]

))
.

Moreover, by Remark 8.7, we also have y ∈ ub
(
f [ Intf (y) ]

)
. Therefore, we

necessarily have f(x) ≤ y , and thus also x ∈ Intf (y) .
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9. Increasingly regular and normal functions

Notation 9.1. In this and the next four sections, we shall assume that :

(a) X and Y are posets ,

(b) ϕ is a function of X to itself ,

(c) f is a function of X to Y and g is a function of Y to X.

Remark 9.2. Because of Theorems 3.8 and 3.10, this generality is actually more
than that is sufficient for all practical purposes.

However, by our recent papers [53, 54] , X and Y could as well be naturally
assumed to be arbitrary gosets, or even relator spaces.

Definition 9.3. Now, according to our former paper [48] , we say that :

(1) f is increasingly g–normal if for any x ∈ X and y ∈ Y we have

f(x) ≤ y ⇐⇒ x ≤ g(y) ,

(2) f is increasingly ϕ–regular if for any u, v ∈ X we have

f(u) ≤ f(v) ⇐⇒ u ≤ ϕ(v) .

Remark 9.4. If (2) holds, then having in mind the classical terminology [3, p.
124] , we may also say that f and g form an increasing Galois connection between
X and Y .

While, if (1) holds, then because of the latter terminology and the fundamental
work of Pataki [24] we may also say that f and ϕ form an increasing Pataki
connection between X and Y .

Now, by using the arguments given in [48] , we can easily prove the following
two theorems.

Theorem 9.5. If f is increasingly g–normal and ϕ = g◦f , then f is increasingly
ϕ–regular.

Theorem 9.6. If f is increasingly ϕ–regular, ϕ = g ◦ f , and Y = f [X ] , then
f is increasingly g–normal.

Proof. Note that if x ∈ X, y ∈ Y , and v ∈ X such that y = f(v) , then

f(x) ≤ y ⇐⇒ f(x) ≤ f(v) ⇐⇒ x ≤ ϕ(v)

⇐⇒ x ≤
(
g ◦ f )(v)

)
⇐⇒ x ≤ g

(
f (v)

)
⇐⇒ x ≤ g (y) .

Remark 9.7. Note that if f is an increasingly g–normal function of X to Y ,
Z = f [X ] , and h = g |Z , then f is an increasingly h–normal function of X
onto Z .

However, the converse statement need not be true. Therefore, the increasingly
normal functions are somewhat more general objects than the increasingly regular
ones.

In this respect, it is also worth mentioning that concerning the increasingly
regular functions we cannot prove a certain counterpart of the following dualization
principle.
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Theorem 9.8. The following assertions are equivalent :

(1) f is an increasingly g–normal function of X to Y ,

(2) g is an increasingly f–normal function of Y ′ to X ′.

Proof. Recall that X ′ = X ′(≤′ ) = X (≤−1
)
. Moreover, note that if (1) holds,

then for any y ∈ Y and x ∈ X, we have

g (y ) ≤′ x ⇐⇒ x ≤ g (y ) ⇐⇒ f (x) ≤ y ⇐⇒ y ≤′ f (x) .

Therefore, (2) also holds. The converse implication can be proved quite similarly.

From this theorem, by using Theorem 9.5, we can immediately derive

Corollary 9.9. If f is an increasingly g–normal function of X to Y , and
ψ = f ◦ g , then g is an increasingly ψ–regular function of Y ′ to X ′.

By using the following definition, the latter two results can be reformulated in
somewhat simpler forms.

Definition 9.10. Under Notation 9.1, we may also naturally say that :

(1) f is decreasingly g–normal if f is increasingly g–normal as a function of
function of X to Y ′,

(2) f is decreasingly ϕ–regular if f is increasingly ϕ–regular as a function of
function of X to Y ′.

Remark 9.11. Now, if (2) holds, then we may also say that f and g form an
decreasing Galois connection between X and Y .

While, if (1) holds, then we may also say that f and ϕ form a decreasing Pataki
connection between X and Y .

Moreover, as an immediate consequence of Theorem 3.8, we can also state the
following theorem which already shows the importance of decreasingly normal
functions.

Theorem 9.12. If R is a relation on X to Y , and

fR (A) = ubR (A) and gR (B ) = lbR (B )

for all A ⊆ X and B ⊆ Y , then fR is a decreasingly gR–normal function of
P (X) to P (Y ) .

Proof. By Theorem 3.8, for any A ⊆ X and B ⊆ Y , we have

fR (A) ⊇ B ⇐⇒ B ⊆ ubR (A) ⇐⇒ A ⊆ lbR (B ) ⇐⇒ A ⊆ gR (B ) .

Therefore, by Definition 9.10, the required assertion is also true.

Remark 9.13. The above ”upper and lower bound Galois connection”, in diffe-
rent formulation, was already studied by Garrett Birkhoff in 1940 under the name
polarity [3, p. 122].

For some further developments of the subject, see the papers [23, 11] , and the
books [4, 13, 12] . However, some more recent results on Galois connections and
their applications are in [9] and [10] .
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10. Some further theorems on increasingly regular and normal
functions

Now, by using the arguments given in [48] , we can also easily prove the following
two theorems and their corollaries.

Theorem 10.1. If f is increasingly ϕ–regular, then

(1) f is increasing , (2) f = f ◦ ϕ .

Proof. For any u ∈ X, we have f(u) ≤ f(u) and ϕ(u) ≤ ϕ(u) . Hence, by using
the assumed regularity of f , we can infer that u ≤ ϕ(u) and f

(
ϕ(u)

)
≤ f(u) .

Moreover, if v ∈ X such that u ≤ v , then because of v ≤ ϕ(v) , we also
have u ≤ ϕ(v) . Hence, by using the assumed regularity of f , we can infer that
f(u) ≤ f(v) . Therefore, (1) is true. Now, from u ≤ ϕ(u) , we can also see that
f(u) ≤ f

(
ϕ(u)

)
, and thus (2) also holds.

Corollary 10.2. If f is increasingly ϕ–regular, then the following assertions are
equivalent :

(1) f is injective , (2) ϕ = ∆X .

Theorem 10.3. The following assertions are equivalent :

(1) ϕ is a closure ,

(2) ϕ is increasingly ϕ–regular ;

(3) there exists an increasingly ϕ–regular function h of X to a poset Z .

Proof. To prove the implication (3) =⇒ (1), note that if (3) holds, then because of
h(u) ≤ h(u) we have u ≤ ϕ(u) for all u ∈ X. Therefore, ϕ is extensive. Moreover,
ϕ(u) ≤ ϕ

(
ϕ(u)

)
also holds for all u ∈ X.

On the other hand, from Theorem 10.1 we can see that h
(
ϕ(u)

)
= h(u) for all

u ∈ X. Thus, h
(
ϕ
(
ϕ(u)

))
) = h

(
ϕ(u)

)
= h(u) ≤ h(u) also holds for all u ∈ X.

Hence, by using (3), we can infer that ϕ
(
ϕ(u)

)
≤ ϕ(u) for all u ∈ X. Therefore,

ϕ is idempotent.
Moreover, if u, v ∈ X such that u ≤ v , then by Theorem 10.1 we have

h
(
ϕ(u)

)
= h(u) ≤ h(v) . Hence, by using (3), we can infer that ϕ(u) ≤ ϕ(v) .

Therefore, ϕ is increasing, and thus (1) also holds.

Remark 10.4. The origin of (2) goes back to R. Dedekind by Erné [10, p. 50] .
While, (3) is mainly due to Pataki [24, Theorem 1.9] .

Corollary 10.5. The following assertions are equivalent :

(1) f is increasingly ϕ–regular ,

(2) ϕ is a closure and Ordf = Ordϕ .

Remark 10.6. Note that the equality Ordf = Ordϕ in a detailed form means
only that for any u, v ∈ X we have f(u) ≤ f(v) if and only if ϕ(u) ≤ ϕ(v) .

From Theorems 10.1 and 10.3, by Theorem 9.5, it is clear that we also have

Theorem 10.7. If f is increasingly g–normal and ϕ = g ◦ f , then

(1) f is increasing , (2) ϕ is a closure , (3) f = f ◦ ϕ .
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Hence, by using Theorem 9.8, we can immediately derive the following

Corollary 10.8. If f is increasingly g–normal and ψ = f ◦ g , then

(1) g is increasing , (2) ψ is an interior , (3) g = g ◦ ψ .

Now, in addition to Theorem 10.3, we can also easily prove the following

Theorem 10.9. The following assertions are equivalent :

(1) ϕ is an involution ; (2) ϕ is increasingly ϕ–normal.

Proof. To prove the implication (2) =⇒ (1) , note that if (2) holds, then by
Theorem 10.7 ϕ is increasing and ϕ2 is extensive. Moreover, by Corollary 10.8,
ϕ2 is intensive. Therefore, ϕ2 = ∆X , and thus (1) also holds.

Moreover, in addition to Corollary 10.2, we can easily prove the following

Theorem 10.10. If f is increasingly g–normal and ψ = f ◦g , then the following
assertions are equivalent :

(1) Y = f [X ] , (2) g is injective , (3) ψ = ∆Y .

In this respect, it is also mentioning that we also have the following

Theorem 10.11. If f is increasingly g–normal and ψ = f ◦ g , then for any
y ∈ Y the following assertions are equivalent :

(1) y ∈ f [X ] , (2) y = ψ(y) , (3) y ≤ ψ(y) .

Proof. From Corollary 10.8, we know that ψ(y) ≤ y . Therefore, (2) and (3)
are equivalent. Moreover, if (2) holds, then y = ψ(y) = (f ◦ g )(y) = f

(
g(y)

)
.

Therefore, (1) also holds.
On the other hand, if (1) holds, then there exists x ∈ X such that f(x) = y ,

and thus f(x) ≤ y . Hence, by using the increasing g–normality of f , we can infer
that x ≤ g(y) . Now, by Theorem 10.7, we can also state that f(x) ≤ f

(
g(y)

)
.

Hence, by using that y = f(x) and f
(
g(y)

)
= (f ◦ g )(y) = ψ(y) , we can see that

(3) also holds.

Now, in addition to Corollary 10.5, we can also easily prove the following

Theorem 10.12. Under the notations ϕ = g ◦ f and ψ = f ◦ g , the following
assertions are equivalent :

(1) f is increasingly g–normal ;

(2) f and g are increasing, ϕ is extensive, and ψ is intensive.

Remark 10.13. This theorem shows that the modern definition of Galois connec-
tions [9, p. 155] , suggested by Schmidt [34, p. 209] , is equivalent to the classical
one given by Ore [23] .

11. Maximum properties of increasingly normal functions

Now, by using the arguments given in [48] , we can also easily prove the following

Theorem 11.1. The following assertions are equivalent :

(1) f is increasingly g–normal ,
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(2) Intf (y) = lb
(
g(y)

)
for all y ∈ Y ,

(3) f is increasing and g(y) = max
(
Intf (y)

)
for all y ∈ Y .

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

f(x) ≤ y ⇐⇒ x ∈ Intf (y) and x ≤ g(y) ⇐⇒ x ∈ lb
(
g(y)

)
.

Therefore, (1) and (2) are equivalent.
Moreover, if (1) holds, then by Theorem 10.7 the function f is increasing. And,

by Corollary 10.8, for any y ∈ Y , we have f
(
g(y)

)
≤ y , and thus g(y) ∈ Intf (y) .

On the other hand, if (1) holds, then by our former observation (2) also holds.
Thus, in particular Intf (y) ⊆ lb

(
g(y)

)
. Hence, by using Theorem 3.8, we can infer

that g(y) ∈ ub
(
Intf (y)

)
. Therefore,

g(y) ∈ Intf (y) ∩ ub
(
Intf (y)

)
= max

(
Intf (y)

)
.

Hence, by using Theorem 5.7, we can infer that g(y) = max
(
Intf (y)

)
, and thus

(3) also holds.
While, if (3) holds, then by Definition 4.3 and Theorem 5.7, for any y ∈ Y , we

have g(y) ∈ Intf (y) and g(y) ∈ ub
(
Intf (y)

)
. Hence, by using Theorem 3.8, we can

infer that Intf (y) ⊆ lb
(
g(y)

)
. Therefore, f(x) ≤ y implies x ≤ g(y) . Moreover,

if x ≤ g(y) , then by the increasingness of f , we also have f(x) ≤ f
(
g(y)

)
.

Moreover, because of g(y) ∈ Intf (y) , we now also have f
(
g(y)

)
≤ y . Therefore,

f(x) ≤ y , and thus (1) also holds.

From this theorem, it is clear that in particular we also have

Corollary 11.2. If f is increasingly g–normal, then g is uniquely determined
by f .

Moreover, from Theorem 11.1, by using Theorems 8.5, we can immediately derive

Theorem 11.3. The following assertions are equivalent :

(1) f is increasingly g–normal ,

(2) lb
(
g(y)

)
= f −1 [ lb(y) ] for all y ∈ Y .

Hence, by Theorem 10.9, it is clear that in particular we also have

Corollary 11.4. The following assertions are equivalent :

(1) ϕ is an involution ,

(2) lb
(
ϕ(x)

)
= ϕ−1 [ lb(x) ] for all x ∈ X.

However, it is now more important to note that, from Theorem 11.1, we can also
easily derive

Theorem 11.5. The following assertions are equivalent :

(1) f is increasingly normal ,

(2) f is increasing and max
(
Intf (y)

)
6= ∅ for all y ∈ Y .

Proof. To prove the implication (2) =⇒ (1) , note that if (2) holds, then by
Theorem 5.7 we can see that

h(y) = max
(
Intf (y)

)
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is a singleton for all y ∈ Y . Therefore, h is a function of Y to X. Moreover,
if y1 , y2 ∈ Y such that y1 ≤ y2 , then by using the increasingness of f , we
can see that Intf (y1) ⊆ Intf (y2) . Therefore, h(y1 ) ≤ h( y2) , and thus h is also
increasing. Hence, by Theorem 11.1, we can see that f is increasingly h–normal,
and thus (1) also holds.

From this theorem, it is clear that in particular we also have

Corollary 11.6. If X is max–complete, then following assertions are equivalent :

(1) f is increasingly normal ,

(2) f is increasing and f [X ] is descending in Y .

Proof. To prove the implication (2) =⇒ (1) , note that if f [X ] is descending
in Y , then for every y ∈ Y there exists x ∈ X such that f(x) ≤ y , and thus
x ∈ Intf (y) . Hence, by using the max–completeness of X, we can infer that
max

(
Intf (y)

)
6= ∅ . Therefore, if in addition f is increasing, then by Theorem 11.5

assertion (1) also holds.

Now, more specially we can also state

Corollary 11.7. If X is max–complete and Y = f [X ] , then following assertions
are also equivalent :

(1) f is increasingly normal , (2) f is increasing .

Remark 11.8. Note that the implications (1) =⇒ (2) in the above corollaries do
not require X to be max–complete.

12. Supremum properties of increasingly normal functions

Now, in addition to Theorem 6.14, we can also prove the following

Theorem 12.1. If f is increasingly normal, then for any A ⊆ X we have

f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
.

Proof. If y ∈ f
[
lb

(
ub(A)

) ]
, then there exists x ∈ lb

(
ub(A)

)
such that

y = f(x) . Moreover, if v ∈ ub
(
f [A ]

)
, then for any a ∈ A we have f (a) ≤ v .

Hence, by using that f is increasingly h–normal for some function h of Y to
X, we can infer that a ≤ h (v ) . Therefore, h (v ) ∈ ub (A) , and thus because of
x ∈ lb

(
ub(A)

)
we have x ≤ h (v ) . Hence, by using the increasing h–normality of

f , we can infer that f (x) ≤ v , and thus y ≤ v . Therefore, y ∈ lb
(
ub

(
f [A ]

))
also holds.

Remark 12.2. Note that this proof does not also need any particular properties
of the inequality relations in X and Y .

From Theorem 12.1, by using Theorems 10.7 and 6.14, we can immediately derive

Corollary 12.3. If f is increasingly normal, then for any A ⊆ X we have

f
[
lb

(
ub(A)

) ]
⊆ lb

(
f [ ub(A) ]

)
.

However, it is now more important to note that, by using Theorem 12.1 and
some former results, we can also prove the following
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Theorem 12.4. If X is sup–complete, then the following assertions are equi-
valent :

(1) f is increasingly normal ,

(2) f
(
sup(A)

)
= sup

(
f [A ]

)
for all A ⊆ X.

(3) f is increasing and sup
(
Intf (y)

)
∈ Intf (y) for all y ∈ Y ,

(4) f is increasing and max
(
Intf (y)

)
= sup

(
Intf (y)

)
for all y ∈ Y ,

(5) f is increasing and f
(
sup (A)

)
∈ lb

(
ub

(
f [A ]

))
for all A ⊆ X,

(6) f is increasing and f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X.

Proof. If (1) holds, then from Theorems 10.7 and 12.1 we can see that (6) also
holds. While, if (6) holds, then by using Theorem 4.4 we can see that

f [ sup (A) ] ⊆ f
[
lb

(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X. Hence, by Theorem 5.7 and the sup–completeness of X, it is clear
that (5) also holds.

While, if (5) holds, then from Theorem 8.11 we can see that (4) also holds.
Moreover, from Theorem 4.6 we can see that, for any y ∈ Y , we have

max
(
Intf (y)

)
= sup

(
Intf (y)

)
⇐⇒ sup

(
Intf (y)

)
⊆ Intf (y) .

Hence, by Theorem 5.7 and the sup–completeness of X, it is clear that (4) and
(3) are equivalent. Furthermore, if (4) holds, then from Theorem 11.5 and the
sup-completeness of we can see that (1) also holds.

Thus, we have proved that assertions (1), (3), (4), (5) and (6) are equivalent.
Therefore, to complete the proof, it remains only to show that (1) and (2) are also
equivalent.

For this note that, if (1) holds, then by Theorems 4.4, 6.7 and 12.1 we have

f
[
sup(A)

]
= f

[
ub(A) ∩ lb

(
ub(A)

) ]
⊆ f

[
ub(A)

]
∩ f

[
lb

(
ub(A)

) ]
⊆ ub

(
f [A ]

)
∩ lb

(
ub

(
f [A ]

))
= sup

(
f [A ]

)
.

for all A ⊆ X. Hence, by Theorem 5.7 and the sup–completeness of X, it is clear
that (2) also holds.

While, if (2) holds, then from Corollary 6.12, we know that f is increasing.
Moreover, by using Theorem 4.4, we can see that

f
(
sup(A)

)
= sup

(
f [A ]

)
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X. Therefore, (5) and thus (1) also holds.

Remark 12.5. Some further supremum properties of increasingly normal functions
can be found in [46] .

13. Maximum and supremum properties of increasingly regular
functions

Now, analogously to Theorem 11.1, we can also easily prove the following
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Theorem 13.1. The following assertions are equivalent :

(1) f is increasingly ϕ–regular ,

(2) Ord−1
f (x) = lb

(
ϕ(x)

)
for all x ∈ X,

(3) f is increasing and ϕ(x) = max
(
Ord−1

f (x)
)

for all x ∈ X.

Proof. By the corresponding definitions, for any x, u ∈ X, we have

f(u) ≤ f(x) ⇐⇒ x ∈ Ordf (u) ⇐⇒ u ∈ Ord−1
f (x)

and u ≤ ϕ(x) ⇐⇒ u ∈ lb
(
ϕ(x)

)
. Therefore, (1) and (2) are equivalent.

The proof of the equivalence (1) ⇐⇒ (2) is similar to that in Theorem 11.1.

From this theorem, it is clear that in particular we also have

Corollary 13.2. If f is increasingly ϕ–regular, then ϕ is uniquely determined
by f .

Moreover, from Theorem 13.1, by using Corollary 8.6, immediately derive

Theorem 13.3. The following assertions are equivalent :

(1) f is increasingly ϕ–regular ,

(2) lb
(
ϕ(x)

)
= f −1

[
lb

(
f(x)

) ]
for all x ∈ X.

Hence, by Theorem 10.3, it is clear that in particular we also have

Corollary 13.4. The following assertions are equivalent :

(1) ϕ is a closure ,

(2) lb
(
ϕ(x)

)
= ϕ−1

[
lb

(
ϕ(x)

) ]
for all x ∈ X.

However, it is now more important to note that, from Theorem 13.1, we can also
easily derive

Theorem 13.5. The following assertions are equivalent :
(1) f is increasingly regular ,

(2) f is increasing and max
(
Ord−1

f (x)
)
6= ∅ for all x ∈ X.

From this theorem, it is clear that in particular we also have

Corollary 13.6. If X is max–complete, then following assertions are equivalent :

(1) f is increasingly regular , (2) f is increasing .

Proof. Namely now, by the corresponding definitions, for any x ∈ X we have
x ∈ Ord−1

f (x) , and thus Ord−1
f (x) 6= ∅ . Therefore, by the max–completeness of

X, we also have max
(
Ord−1

f (x)
)
6= ∅ .

Now, by using Theorem 13.5, we can also prove the following

Theorem 13.7. If Y = f [X ] , then the following assertions are equivalent :
(1) f is increasingly regular , (2) f is increasingly normal .

Proof. If (1) holds, then by Theorem 13.5 the function f is increasing, and moreover
max

(
Ord−1

f (x)
)
6= ∅ for all x ∈ X. Moreover, from Theorem 8.4, we can see that

max
(
Intf

(
f(x)

))
= max

(
Ord−1

f (x)
)
6= ∅ for all x ∈ X. Hence, by using that
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Y = f [X ] , we can already infer that max
(
Intf (y)

)
6= ∅ for all y ∈ Y . Thus, by

Theorem 11.5, assertion (2) also holds.
The converse implication (2) =⇒ (1) is immediate from Theorem 9.5.

Remark 13.8. By using this theorem, from the results of Section 12 we can imme-
diately derive some useful supremum properties of increasingly regular functions.

For instance, from Theorem 12.4, by using Theorem 13.7 and Theorem 8.4, we
can immediately derive the following partial generalization of [46, Corollary 8.2] .

Theorem 13.9. If X is sup–complete, then under the notation Z = f [X ] the
following assertions are equivalent :

(1) f is increasingly regular ,

(2) f [ sup(A) ] = supZ

(
f [A ]

)
for all A ⊆ X,

(3) f is increasing and sup
(
Ord−1

f (x)
)
∈ Ord−1

f (x) for all x ∈ X,

(4) f is increasing and max
(
Ord−1

f (x)
)

= sup
(
Ord−1

f (x)
)

for all x ∈ X.

Hence, by using Theorem 10.3, we can immediately derive the following partial
generalization of Theorem 7.17.

Corollary 13.10. If X is sup-complete, then under the notation Z = ϕ [X ] , the
following assertions are equivalent :

(1) ϕ is a closure ,

(2) ϕ [ sup(A) ] = supZ

(
ϕ [A ]

)
for all A ⊆ X,

(3) ϕ is increasing and sup
(
Ord−1

ϕ (x)
)
∈ Ord−1

ϕ (x) for all x ∈ X,

(4) ϕ is increasing and max
(
Ord−1

ϕ (x)
)

= sup
(
Ord−1

ϕ (x)
)

for all x ∈ X.

14. The closure–interior Galois connection

Notation 14.1. In this and the next three sections, we shall assume that R is a
relation on one set X to another Y .

Definition 14.2. Under this assumption, we define

FR(A) = clR−1(A) and GR(B) = intR (B )

for all A ⊆ X and B ⊆ Y .

Remark 14.3. Thus, by Definition 3.2 and Theorem 3.7, we have

(1) GR(B) =
{
x ∈ X : R(x) ⊆ B

}
for all B ⊆ Y ,

(2) FR(A) =
{
y ∈ Y : R−1(y) ∩A 6= ∅

}
for all A ⊆ X.

Moreover, by using Theorem 3.7 and Definition 3.5, we can easily establish

Theorem 14.4. We have

(1) FR(A) = R [A ] for all A ⊆ X,

(2) GR(B) = R−1 [B c ] c for all B ⊆ Y .
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Proof. To check (2), note that by Definition 3.5 we have intR = cl c
R ◦ CY . Thus,

by the corresponding definitions and Theorem 3.7, we also have

GR(B) = intR (B ) =
(
cl c

R ◦ CY

)
(B ) = cl c

R(B c) = clR(B c )c = R−1 [B c ] c

for all B ⊆ Y .

Now, by this theorem and Remark 14.3, we can also state

Corollary 14.5. Under the notation FR (x) = FR

(
{x}

)
, we have

(1) R(x) = FR (x) for all x ∈ X,

(2) GR(B ) =
{
x ∈ X : FR (x) ⊆ B

}
for all B ⊆ Y .

However, it is now more important to note that, by using Theorem 3.10, we can
also easily prove the following

Theorem 14.6. FR is an increasingly GR–normal function of P (X) to P (Y ) .

Proof. By Definition 14.2 and Theorem 3.10, for any A ⊆ X and B ⊆ Y , we have

FR(A) ⊆ B ⇐⇒ clR−1(A) ⊆ B ⇐⇒ A ⊆ intR(B ) ⇐⇒ A ⊆ GR(B ) .

Therefore, by Definition 9.3, the required assertion is also true.

Remark 14.7. By using our former terminology, this theorem can also be
expressed by saying that the functions FR and GR form an increasing Galois
connection between the posets P(X) and P(Y ) .

Because of Theorem 3.4, this ”closure–interior Galois connection” is not indepen-
dent from the ”upper and lower bound Galois connection” considered in Theorem
9.12. It has been first introduced in [56] with reference to [9, Exercise 7.18] .

From Theorem 14.6, by using our former theorems on increasingly normal
functions, we can immediately derive several theorems about the functions FR

and GR . However, it is sometimes more convenient to give some direct proofs.
For instance, from Theorem 14.6, by using Theorems 11.1 and 12.4, we can

immediately derive the following two theorems, which can however be more easily
proved directly.

Theorem 14.8. If G is a function of P(Y ) to P(X) such that FR is G–normal,
then G = GR .

Proof. By Definition 9.3 and Corollary 14.5, for any x ∈ X and B ⊆ Y , we have

x ∈ G(B ) ⇐⇒ {x} ⊆ G(B ) ⇐⇒ FR

(
{x}

)
⊆ B ⇐⇒ x ∈ GR(B ) .

Theorem 14.9. FR is union-preserving and GR is intersection-preserving.

Proof. If A i ⊆ X for all i ∈ I , then by Theorem 14.4 and a basic property of
relations, it is clear that

FR

( ⋃
i∈I

A i

)
= R

[ ⋃
i∈I

A i

]
=

⋃
i∈I

R [A i ] =
⋃

i∈I

FR(A i ) .
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While, if Bj ⊆ Y for all j ∈ J , then by using Theorem 14.4 and the DeMorgan
laws, we can easily see that

GR

( ⋂
j∈J

Bj

)
= R−1

[ ( ⋂
j∈J

Bj

)c ] c

= R−1
[ ⋃

j∈J

B c
j

] c

=
( ⋃

j∈J

R−1 [B c
j ]

)c

=
⋂

j∈J

R−1 [B c
j ] c =

⋂
j∈J

GR(Bj ) .

Hence, it is clear that in particular we can also have

Corollary 14.10. FR and GR are increasing with respect to set inclusion.

Proof. Namely, if for instance B1 , B2 ⊆ Y such that B1 ⊆ B2 , then by Theo-
rem 14.9 we have GR(B1) = GR (B1 ∩ B2) = GR(B1) ∩ GR(B2) , and thus also
GR(B1) ⊆ GR(B2) .

Remark 14.11. Note that the increasingness of GR is also quite obvious from
Definitions 13.2 and 3.2.

15. The induced closure and interior operations

Definition 15.1. Now, by Theorem 10.7 and Corollary 10.8, we may also naturally
define

ΦR = GR ◦ FR and ΨR = FR ◦ GR .

Remark 15.2. Thus, we have

(1) ΦR(A) = GR

(
FR(A)

)
for all A ⊆ X,

(2) ΨR(B ) = FR

(
GR(B )

)
for all B ⊆ Y .

Hence, by using Definition 14.2 and Theorem 14.4, we can immediately derive
the following two theorems.

Theorem 15.3. We have

(1) ΦR(A) = intR

(
clR−1(A)

)
for all A ⊆ X,

(2) ΨR(B ) = clR−1

(
intR(B )

)
for all B ⊆ Y .

Theorem 15.4. We have

(1) ΦR(A) = R−1
[
R [A ] c

] c for all A ⊆ X,

(2) ΨR(B ) = R
[
R−1 [B c ] c

]
for all B ⊆ Y .

Now, as an immediate consequence of Theorems 14.6 and 9.5 and Corollary 9.9,
we also can state the following

Theorem 15.5. The following assertions hold:

(1) FR is an increasingly ΦR–regular function of P(X) to P(Y ) ,

(2) GF is an increasingly ΨR–regular function of P(Y )′ to P(X)′.

Remark 15.6. The above assertions in detailed forms mean only that :

(1) FR(U ) ⊆ FR(V ) ⇐⇒ U ⊆ ΦR(V ) for all U , V ⊆ X,

(2) GR(Ω) ⊆ GR(W ) ⇐⇒ ΨR(Ω) ⊆W for all Ω , W ⊆ Y .
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Hence, by using Definition 14.2 and Theorems 14.4, 15.3 and 15.4, we can
immediately derive the following two corollaries.

Corollary 15.7. We have

(1) intR( Ω) ⊆ intR(W ) ⇐⇒ clR−1

(
intR(Ω)

)
⊆W for all Ω , W ⊆ Y ,

(2) clR−1(U ) ⊆ clR−1(V ) ⇐⇒ U ⊆ intR

(
clR−1(V )

)
for all U , V ⊆ X.

Corollary 15.8. We have

(1) R [U ] ⊆ R [V ] ⇐⇒ R−1
[
R [V ] c

]
⊆ U c for all U , V ⊆ X,

(2) R−1 [ Ωc ] ⊆ R−1 [W c ] ⇐⇒ R
[
R−1 [W c ] c

]
⊆ Ω for all Ω , W ⊆ Y .

Proof. To check (2), note that, by Theorem 14.4 Remark 15.6 and Theorem 15.4,
we have

R−1 [ Ωc ] ⊆ R−1 [W c ] ⇐⇒ R−1 [W c ] c ⊆ R−1 [ Ωc ]c

⇐⇒ GR(W ) ⊆ GR(Ω) ⇐⇒ ΨR(W ) ⊆ Ω ⇐⇒ R
[
R−1 [W c ] c

]
⊆ Ω

for all Ω , W ⊆ Y .

Now, as an immediate consequence of Theorems 14.6 and and 10.7 and Corollary
10.8, we can also state

Theorem 15.9. The following assertions hold :

(1) ΦR is a closure on P(X) such that FR = FR ◦ ΦR ,

(2) ΨR is an interior on P(Y ) such that GR = GR ◦ ΨR .

Remark 15.10. Thus, in particular we have

(1) A ⊆ ΦR(A) for all A ⊆ X, (2) ΨR(B ) ⊆ B for all B ⊆ Y .

Hence, by using Theorems 15.3 and 15.4 we can immediately derive the following
two corollaries.

Corollary 15.11. We have

(1) A ⊆ intR

(
clR−1(A)

)
for all A ⊆ X,

(2) clR−1

(
intR(B )

)
⊆ B for all B ⊆ Y .

Corollary 15.12. We have

(1) A ⊆ R−1
[
R [A ] c

] c for all A ⊆ X,

(2) R
[
R−1 [B c ] c

]
⊆ B for all B ⊆ Y .

Remark 15.13. By Theorem 15.9, we also have

(1) FR(A) = FR

(
ΦR(A)

)
for all A ⊆ X,

(2) GR(B ) = GR

(
ΨR(B )

)
for all B ⊆ Y .

Hence, by using Definition 14.2 and Theorems 14.4, 15.3 and 15.4, we can
immediately derive the following two corollaries.

Corollary 15.14. We have

(1) intR(B ) = intR

(
clR−1

(
intR(B )

))
for all B ⊆ Y ,

(2) clR−1(A) = clR−1

(
intR

(
clR−1(A)

))
for all A ⊆ X.
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Corollary 15.15. We have

(1) R [A ] = R
[
R−1

[
R [A ] c

] c ]
for all A ⊆ X,

(2) R−1 [B c ] = R−1
[
R

[
R−1 [B c ] c

]c ]
for all B ⊆ Y .

Proof. To check (2), note that by Theorem 14.4, Remark 15.12, and Theorem 15.4
we have

R−1 [B c ] =
(
R−1 [B c ] c

)c = GR(B )c = GR

(
ΨR(B )

)c

=
(
R−1

[
ΨR(B )c

] c )c
= R−1

[
ΨR(B )c

]
= R−1

[
R

[
R−1 [B c ] c

]c ]
for all B ⊆ Y .

16. Coincidence of the values of FR and GR with the fixed points
of ΨR and ΦR

Now, as an immediate consequence of Theorems 14.6 and 10.11, we can also
state the following

Theorem 16.1. For any B ⊆ Y , the following assertions are equivalent :

(1) B = FR(A) for some A ⊆ X,

(2) B = ΨR(B ) , (3) B ⊆ ΨR(B ) .

Hence, by using Definition 14.2 and Theorems 14.4, 15.3 and 15.4, we can
immediately derive the following two corollaries.

Corollary 16.2. For any B ⊆ Y , the following assertions are equivalent :

(1) B = clR−1(A) for some A ⊆ X,

(2) B = clR−1

(
intR(B )

)
, (3) B ⊆ clR−1

(
intR(B )

)
.

Corollary 16.3. For any B ⊆ Y , the following assertions are equivalent :

(1) B = R [A ] for some A ⊆ X,

(2) B = R
[
R−1 [B c ] c

]
, (3) B ⊆ R

[
R−1 [B c ] c

]
.

Now, in addition to the above corollaries, we can also easily prove

Theorem 16.4. For any B ⊆ Y , the following assertions are equivalent :

(1) B = R [A ] for some A ⊆ X,

(2) B = clR−1(A) for some A ⊆ X,

(3) ∀ y ∈ B : ∃ x ∈ X : y ∈ R(x) ⊆ B .

Proof. To prove the implication (2) =⇒ (3), note that if (2) holds, then by
Corollary 16.2 we have B ⊆ clR−1

(
intR(B )

)
. Therefore, for every y ∈ B , we have

y ∈ clR−1

(
intR(B )

)
. Hence, by using Theorem 3.7, we can already infer that

R−1(y) ∩ intR(B ) 6= ∅ . Therefore, there exists x ∈ X such that x ∈ R−1(y) and
x ∈ intR(B ) . Hence, by using the corresponding definitions, we can infer that
y ∈ R(x) and R(x) ⊆ B , and thus (3) also holds.
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Remark 16.5. From Theorem 10.11, by using Theorem 9.8, we can easily see
that if f is an increasingly g–normal function f of one poset X to another Y ,
then under the notation ϕ = g ◦ f , for any x ∈ X, the following assertions are
equivalent :

(1) x ∈ g [Y ] , (2) x = ϕ(x) , (3) ϕ(x) ≤ x .

Hence, by Theorem 14.6, it is clear that in particular we also have the following
dual of Theorem 16.1.

Theorem 16.6. For any A ⊆ X, the following assertions are equivalent :

(1) A = GR(B ) for some B ⊆ Y ,

(2) A = ΦR(A) , (3) ΦR(A) ⊆ A .

Now, by using Definition 14.2 and Theorems 14.4, 15.3 and 15.4, we can also
easily establish following two corollaries.

Corollary 16.7. For any A ⊆ X, the following assertions are equivalent :

(1) A = intR(B ) for some B ⊆ Y ,

(2) A = intR

(
clR−1(A)

)
, (3) intR

(
clR−1(A)

)
⊆ A .

Corollary 16.8. For any A ⊆ X, the following assertions are equivalent :

(1) A = R−1 [B c ] c for some B ⊆ Y ,

(2) A = R−1
[
R [A ] c

] c , (3) R−1
[
R [A ] c

] c ⊆ A .

Moreover, in addition to the latter corollaries, we can also easily prove

Theorem 16.9. For any A ⊆ X, the following assertions are equivalent :

(1) A = intR(B ) for some B ⊆ Y ,

(2) A = R−1 [B c ] c for some B ⊆ Y ,

(3) ∀ x ∈ Ac : ∃ y ∈ R(x) : y /∈ R [A ] .

Proof. To prove the implication (1) =⇒ (3), note that if (1) holds, then by
Corollary 16.7 we have intR

(
clR−1(A)

)
⊆ A , and thus Ac∩ intR

(
clR−1(A)

)
= ∅ .

Therefore, for every x ∈ Ac, we have x /∈ intR

(
clR−1(A)

)
, and thus also

R(x) 6⊆ clR−1(A) . Therefore, there exists y ∈ R(x) such that y /∈ clR−1(A) .
Hence, by using Theorem 3.7, we can infer that R−1(y) ∩ A = ∅ . Therefore,
y /∈ R [A ] , and thus (3) also holds.

Remark 16.10. Note that requirement y /∈ R [A ] in a detailed form means only
that y /∈ R(a) for all a ∈ A .

17. Maximum properties of the functions FR and ΦR

Now, by Theorems 14.6 and 11.1, we can also at once state the following

Theorem 17.1. For any B ⊆ Y , we have

(1) IntFR
(B ) = lb

(
GR(B )

)
, (2) GR(B ) = max

(
IntFR

(B )
)
.

Remark 17.2. Moreover, by the corresponding definitions, we also have

(1) lb
(
GR(B )

)
= P

(
GR(B )

)
, (2) IntFR

(B ) =
{
A ⊆ X : FR(A) ⊆ B

}
.
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Thus, in particular, by Theorem 17.1, we can also state the following

Corollary 17.3. If B ⊆ Y , then A = GF (B ) is the largest subset of X such
that FR(A) ⊆ B .

Hence, by using Definition 14.2 and Theorem 14.4, we can immediately derive
the following two corollaries.

Corollary 17.4. If B ⊆ Y , then A = intR(B ) is the largest subset of X such
that clR−1 [A ] ⊆ B .

Corollary 17.5. If B ⊆ Y , then A = R−1 [B c ] c is the largest subset of X such
that R [A ] ⊆ B .

Remark 17.6. To check this statement, note that x ∈ A =⇒ x ∈ R−1 [B c ] c =⇒
x /∈ R−1 [B c ] =⇒ R(x) ∩B c = ∅ =⇒ R(x) ⊆ B . Therefore, R[A ] ⊆ B .

Moreover, if U ⊆ X such that R [U ] ⊆ B , then x ∈ U =⇒ R(x) ⊆ B =⇒
R(x) ∩ B c = ∅ =⇒ x /∈ R−1 [B c ] =⇒ x ∈ R−1 [B c ] c =⇒ x ∈ A . Therefore,
U ⊆ A .

Now, by Theorems 15.5 and 13.1, we can also at once state the following

Theorem 17.7. For every A ⊆ X, we have

(1) Ord−1
FR

(A) = lb
(
ΦR(A)

)
, (2) ΦR(A) = max

(
Ord−1

FR
(A)

)
.

Remark 17.8. Moreover, by Theorem 15.9 and the corresponding definitions, we
also have

(1) FR(A) = FR

(
ΦR(A)

)
,

(2) Ord−1
FR

(A) =
{
U ⊆ X : FR(U ) ⊆ FR(A)

}
.

Thus, in particular, by Theorem 17.7, we can also state the following

Corollary 17.9. If A ⊆ X, then U = ΦR(A) is the largest subset of X such
that FR(U ) ⊆ FR(A)

(
FR(U ) = FR(A)

)
.

Hence, by using Theorem 15.3 and 15.4, we can immediately derive the following
two corollaries.

Corollary 17.10. If A ⊆ X, then U = intR

(
clR−1(A)

)
is the largest subset of

X such that clR−1(U ) ⊆ clR−1(A)
(
clR−1(U ) = clR−1(A)

)
.

Corollary 17.11. If A ⊆ X, then U = R−1
[
R [A ] c

] c is the largest subset of
X such that R [U ] ⊆ R [A ]

(
R [U ] = R [A ]

)
.

Remark 17.12. Note that the first statement of the latter corollary is also an
immediate consequence of Corollary 17.5.

Therefore, to give a direct proof of Corollary 17.11, we need only show that
R [A ] ⊆ R

[
R−1

[
R [A ] c

] c] also holds.
For this, note that, by Remark 17.6, for any x ∈ X we have x ∈ R−1

[
R [A ] c

] c ⇐⇒
R(x) ⊆ R [A ] . Thus, in particular A ⊆ R−1

[
R [A ] c

] c .
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18. Some basic facts on the box product of relations

To apply our former results on the closure–interior Galois connection to rela-
tional inclusions and equalities, in addition to composition, we shall also need the
pointwise Cartesian product of relations. For this, we shall fix the following

Notation 18.1. In this section, we shall assume that F is a relation on X to Z
and G is a relation on Y to W .

Definition 18.2. Under this assumption, we define

(F �G )(x, y ) = F (x)×G(y)

for all x ∈ X and y ∈ Y .

Remark 18.3. Thus, F � G is a relation on X×Y to Z×W , which has been
called the box product of F and G in [50] . This was already considered in a thesis
of J. Riquet in 1951 who called it tensor product.

The importance of the box product is already apparent from the following

Theorem 18.4. For any R ⊆ X×Y , we have

(F �G ) [R ] = G ◦R ◦ F −1 .

Proof. If (z , w) ∈ (F �G ) [R ] , then there exists (x, y ) ∈ R such that

(z , w) ∈ (F �G )(x, y ) = F (x)×G(y) ,

and thus z ∈ F (x) and w ∈ G(y) . Hence, by noticing that x ∈ F −1(z) , we can
already see that

y ∈ R(x) ⊂ R
[
F −1(z)

]
=

(
R ◦ F −1

)
(y) ,

and thus

w ∈ G(y ) ⊆ G
[ (
R ◦ F−1

)
(z)

]
=

(
G ◦

(
R ◦ F −1

))
(z) .

Therefore, (z , w) ∈ G ◦
(
R ◦ F −1

)
= G ◦R ◦ F −1 also holds.

Thus, we have proved that (F �G ) [R ] ⊆ G ◦R ◦F −1. The converse inclusion
can be proved quite similarly.

From Theorem 18.4, by taking R = {(x, y )} , we can immediately derive

Corollary 18.5. For any x ∈ X and y ∈ Y , we have

(F �G )(x, y ) = G ◦ {(x, y )} ◦ F −1.

Moreover, by using Theorem 18.4, we can also easily prove the following

Corollary 18.6. In the Y = Z particular case, we have

G ◦ F =
(
F −1 � G

)
[∆Y ] .

Proof. By the corresponding definitions and Theorem 18.4, it is clear that

G ◦ F = G ◦∆Y ◦
(
F −1

)−1 =
(
F −1 � G

)
[∆Y ] .

Remark 18.7. The above corollaries show that the box and composition products
of relations are actually equivalent tools.

However, in contrast to the composition product, the box product of relations
can be immediately defined for an arbitrary family of relations.
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Moreover, concerning the box product, we can prove a simpler inversion formula.

Theorem 18.8. We have

(F �G )−1 = F −1 � G−1 .

Proof. For any (x, y ) ∈ X×Y and (z , w) ∈ Z×W , we have

(x, y ) ∈ (F �G )−1(z , w) ⇐⇒ (z , w) ∈ (F �G )(x, y ) ⇐⇒
(z , w) ∈ F (x)×G(y) ⇐⇒ z ∈ F (x) , w ∈ G(y) ⇐⇒ x ∈ F −1(z) , y ∈ G−1(w)

⇐⇒ (x, y ) ∈ F −1(z)×G−1(w) ⇐⇒ (x, y ) ∈
(
F −1 � G−1

)
(z , w) .

Therefore, (F �G )−1(z , w) =
(
F −1 � G−1

)
(z , w) for all (z , w) ∈ Z×W , and

thus the required equality is also true.

Now, by using Theorems 18.4 and 18.8, we can also easily prove the following

Theorem 18.9. For any S ⊆ Z×W , we have

(F �G )−1 [S ] = G−1◦ S ◦ F .

Proof. By Theorems 18.8 and 18.4, it is clear that

(F �G)−1 [S ] =
(
F −1 � G−1

)
[S ] = G−1◦ S ◦

(
F −1

)−1 = G−1◦ S ◦ F .

From this theorem, by using Theorem 3.7 we can immediately derive

Corollary 18.10. For any S ⊆ Z×W we have

clF � G (S ) = G−1◦ S ◦ F .

19. Applications of the box product and Corollary 17.3
to relational inclusions

Notation 19.1. In this and the next section, in addition to assumptions of
Notation 18.1, we shall use the notation

R = F �G .

Remark 19.2. Thus, R is a relation on X×Y to Z×W such that

R(x, y ) = (F �G)(x, y ) = F (x)×G(y)

for all x ∈ X and y ∈ Y .

Moreover, by Theorems 14.4, 18.4 and 18.9, we can at once state

Theorem 19.3. We have

(1) FR(A) = G ◦A ◦ F −1 for all A ⊆ X×Y ,

(2) GR(B ) =
(
G−1 ◦ B c ◦ F

)c for all B ⊆ Z×W .

Proof. To check (2), note that by Theorems 14.4 and 18.9 we have

GR(B ) = R−1 [B c ] c = (F �G)−1 [B c ] c =
(
G−1 ◦ B c ◦ F

)c

for all B ⊆ Z×W .

Definition 19.4. For any B ⊆ Z×W , we define

Γ(F, G, B) =
(
G−1 ◦ B c ◦ F

)c
.
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Remark 19.5. Thus, Γ(F, G, B) is a relation on X to Y . Moreover, by Theorem
19.3 and the corresponding definitions, we have

Γ(F, G, B) = GR(B ) = intR(B ) =
{

(x, y ) ∈ X×Y : R(x, y ) ⊆ B
}

=
{

(x, y ) ∈ X×Y : (F � G )(x, y ) ⊆ B
}

for all B ⊆ Z×W .

Hence, by the corresponding definitions and Corollary 18.5, it is clear that we
also have the following

Theorem 19.6. For any (x, y ) ∈ X×Y and B ⊆ Z×W , the following assertions
are equivalent :

(1) (x, y ) ∈ Γ(F, G, B) , (2) F (x)× G(y) ⊆ B ,

(3) (F � G )(x, y ) ⊆ B , (4) G ◦ {(x, y )} ◦ F −1 ⊆ B ,

(5) (x, z ) ∈ F , (y , w) ∈ G =⇒ (z , w) ∈ B .

Proof. To see the equivalence of (3) and (4), recall that by Corollary 18.5 we have

(F �G )(x, y ) = G ◦ {(x, y )} ◦ F −1

for all (x, y ) ∈ X×Y .

Moreover, by using Corollary 17.3 and Theorem 19.3, we can also easily prove

Theorem 19.7. If B ⊆ Z×W , then A = Γ(F, G, B) is the largest subset of X×Y
such that

G ◦A ◦ F −1 ⊆ B .

Proof. Note that, by Corollary 17.3, A = GF (B ) is the largest subset of X
such that FR(A) ⊆ B . Moreover, by Theorem 19.3 and Definition 19.4, we have
FR(A) = G ◦A ◦ F −1 and GF (B ) = Γ(F, G, B) .

Now, as an immediate consequence of this theorem and the increasingness of
composition, we can also state

Theorem 19.8. For any A ⊆ X×Y and B ⊆ Z×W , the following assertions are
equivalent :

(1) A ⊆ Γ(F, G, B) , (2) G ◦A ◦ F −1 ⊆ B .

Proof. To prove the implication (1) =⇒ (2), note that if (1) holds, then by the
increasingness of composition and Theorem 19.7 we have

G ◦A ◦ F −1 ⊆ G ◦ Γ(F, G, B) ◦ F −1 ⊆ B ,

and thus (2) also holds.

Remark 19.9. Note that, by Theorems 18.4 and 18.9, we have

(1) G ◦A ◦ F −1 = (F �G) [A ] for all A ⊆ X×Y ,

(2) Γ(F, G, B) = (F �G)−1 [B c ]c for all B ⊆ Z×W .

Therefore, Theorem 19.8 can also be reformulated in the following form.

Theorem 19.10. For any A ⊆ X×Y and B ⊆ Z×W , the following assertions
are equivalent :

(1) (F �G) [A ] ⊆ B , (2) (F �G)−1 [B c ] ⊆ Ac .
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Hence, by Definition 8.2 and Theorem 3.7, it is clear that we can also state

Theorem 19.11. For any A ⊆ X×Y and B ⊆ Z×W , the following assertions
are equivalent :

(1) A ∈ IntF �G(B ) , (2) clF �G [B c ] ⊆ Ac .

Definition 19.12. Now, for instance, we may also define

G∗ =
(
G−1 ◦ Gc ◦ G−1

)c
.

Remark 19.13. Thus, G∗ is a relation on W to Y . Moreover, by Definition 19.4,
we have

G∗ = Γ(G−1, G, G) .

Therefore, as some immediate consequence of Theorems 19.6, 19.7 and 19.8, we
can state the following three theorems.

Theorem 19.14. For any (w, y ) ∈W×Y , the following assertions are equivalent :

(1) (w, y ) ∈ G∗ , (2) G−1(w)×G(y) ⊆ G ,

(3) (G−1 � G)(w, y ) ⊆ G , (4) G ◦ {(w, y )} ◦G ⊆ G ,

(5) (υ, w) ∈ G, (y , ω ) ∈ G =⇒ (υ, ω ) ∈ G .

Theorem 19.15. G∗ is the largest subset of W×Y such that

G ◦G∗◦G ⊆ G .

Theorem 19.16. For any Ω ⊆W×Y , the following assertions are equivalent :

(1) Ω ⊆ G∗ , (2) G ◦ Ω ◦G ⊆ G .

Remark 19.17. Note that, by Remark 19.9 and Theorem 18.8, we have

(1) G∗ =
(
G�G−1

)
[Gc ]c ,

(2) G ◦ Ω ◦G =
(
G−1 � G

)
[ Ω ] for all Ω ⊆W×Y ,

Moreover, as some immediate consequences of Theorems 19.10 and 19.11, we can
also state the following two theorems.

Theorem 19.18. For any Ω ⊆W×Y , the following assertions are equivalent :

(1) (G−1 � G) [ Ω ] ⊆ G , (2) (G� G−1) [Gc ] ⊆ Ac .

Theorem 19.19. For any Ω ⊆W×Y , the following assertions are equivalent :

(1) Ω ∈ IntG−1 �G (G) , (2) clG−1 �G [Gc ] ⊆ Ωc .

Remark 19.20. For a relation ρ , the notation ρ∗ = { (a, b) : ρ◦{a, b)}◦ρ ⊆ ρ}
was already used by Zareckǐı [68, p. 299] .

However, the equality ρ∗ =
(
ρ−1 ◦ ρc ◦ ρ

)c and the Y = W particular cases
of Theorems 19.15 and 19.16 were first proved by Schein [33] .

20. Applications of the box product and Theorem 16.1
to relational equations

Now, by using Theorems 16.1 and 19.3, we can also easily prove the following
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Theorem 20.1. For any B ⊆ Z×W , the following assertions are equivalent :

(1) B = G ◦A ◦ F −1 for some A ⊆ X×Y ,

(2) B = G ◦ Γ(F, G, B) ◦ F −1 , (3) B ⊆ G ◦ Γ(F, G, B) ◦ F −1 .

Proof. From Theorem 16.1, we know that, under the notation ΨR = FR ◦GR , the
following assertions are equivalent :

(a) B = FR(A) for some A ⊆ X×Y ,

(b) B = ΨR(B ) , (c) B ⊆ ΨR(B ) .

Moreover, from Theorem 19.3 and Definition 19.4, we can see that

FR(A) = G ◦A ◦ F −1 and GR(B ) = Γ(F, G, B) ,

and thus

ΨR(B ) = FR

(
GR(B )

)
= FR

(
Γ(F, G, B)

)
= G ◦ Γ(F, G, B) ◦ F −1 .

Therefore, assertions (1), (2) and (3) are also equivalent.

Remark 20.2. Note that now, by Theorem 15.9, ΨR is an interior on P (Z×W )
such that GR = GR ◦ΨR .

Moreover, by Theorem 19.3, we have

ΨR(B ) = FR
(
GR(B )

)
= G ◦

(
G−1 ◦ B c ◦ F

)c ◦ F −1

for all B ⊆ Z×W .

Moreover, by using Remark 19.9, the above theorem can be reformulated in the
following form.

Theorem 20.3. For any B ⊆ Z×W , the following assertions are equivalent :

(1) B = (F �G) [A ] for some A ⊆ X×Y ,

(2) B =
(
F�G

)[
(F�G)−1 [B c ]c

]
, (3) B ⊆

(
F�G

)[
(F�G)−1 [B c ]c

]
.

However, it is now more important to note that, by using Theorem 20.1 and
19.6, we can also prove the following

Theorem 20.4. For any B ⊆ Z×W , the following assertions are equivalent :

(1) B = G ◦A ◦ F −1 for some A ⊆ X×Y ,

(2) ∀ (z , w) ∈ B : ∃ (x, y ) ∈ X×Y : (z , w) ∈ F (x)×G(y) ⊆ B ,

(3) ∀ (z , w) ∈ B : ∃ (x, y ) ∈ X×Y :

(a) (x, z ) ∈ F , (y, w) ∈ G ,

(b) (x, s) ∈ F , (y, t) ∈ G =⇒ (s, t) ∈ B .

Proof. If (1) holds, then by Theorems 20.1 and 18.4 we have

B ⊆ G ◦ Γ(F, G, B) ◦ F −1 =
(
F �G

)[
Γ(F, G, B)

]
.

Therefore, for every (z , w) ∈ B , there exists (x, y ) ∈ X×Y such that

(x, y ) ∈ Γ(F, G, B) and (z , w) ∈ (F � G)(x, y ) .
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Thus, in particular (z , w) ∈ F (x)×G(y) . Moreover, from Theorem 19.6, we can
see that F (x)×G(y) ⊆ B . Therefore, (2) also holds.

While, if (2) holds, then from (z , w) ∈ F (x) × G(y) we can see that
z ∈ F (x) and w ∈ G(y) , and thus (x, z ) ∈ F and (y, w) ∈ G . Moreover,
from F (x) × G(y) ⊆ B , we can see that, for every s ∈ F (x) and t ∈ G(y) , we
have (s, t) ∈ B . Hence, by noticing that (x, s) ∈ F and (y, t) ∈ G , we can infer
that (3) also holds.

The converse implications (3) =⇒ (2) and (2) =⇒ (1) can be proved quite
similarly.

Now, by using Remark 19.13, we can easily establish the following particular
cases of Theorems 20.1, 20.3 and 20.4.

Theorem 20.5. The following assertions are equivalent :

(1) G = G ◦ Ω ◦G for some Ω ⊆W×Y ,

(2) G = G ◦G∗ ◦ G , (3) G ⊆ G ◦G∗ ◦ G .

Theorem 20.6. The following assertions are equivalent :

(1) G =
(
G−1 � G

)[ (
G � G−1

)
[Gc ]c

]
,

(2) G ⊆
(
G−1 � G

)[ (
G � G−1

)
[Gc ]c

]
,

(3) G =
(
G−1 � G

)
[ Ω ] for some Ω ⊆W×Y .

Theorem 20.7. The following assertions are equivalent :

(1) G = G ◦ Ω ◦G for some Ω ⊆W×Y ,

(2) ∀ (y , w) ∈ G : ∃ (ω, υ ) ∈W×Y : (y , w) ∈ G−1(ω)× G(υ) ⊆ G ,

(3) ∀ (y , w) ∈ G : ∃ (ω, υ ) ∈W×Y :

(a) (y , ω ) ∈ G , (υ, w) ∈ G ,

(b) (ω, s) ∈ G , (υ, t) ∈ G =⇒ (s, t) ∈ G .

Remark 20.8. Certain forms of Theorems 20.5 and 20.7, for a relation ρ on a set
X, were first proved by Schein [33] and Xu and Liu [63] .

Some more difficult characterizations of regular relations were formerly disco-
vered by Zareckǐı [68], Markowsky [22], Bandelt [1] and Hardy and Petrich [16] .
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[38] Á. Száz, Refinements of relators, Tech. Rep., Inst. Math., Univ. Debrecen 76 (1993), 19 pp.
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