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REMARKS AND PROBLEMS AT THE
CONFERENCE ON INEQUALITIES AND APPLICATIONS,

HAJDÚSZOBOSZLÓ, HUNGARY, 2014

ÁRPÁD SZÁZ

Abstract. This paper contains improved forms of most of the remarks and

problems of the author presented at Conference on Inequalities and Applica-
tions, Hajdúszoboszló, Hungary, 2014.

In particular, the following interesting subjects are included:

1. Two Galois connections derived from a single relation.
2. Galois connections can be used to establish some properties of recession

cones.

3. Galois connections can be used to solve some equations and extremum
problems.

4. Which continuity properties force an additive function of the real line to

be linear?
5. A functional equationist motivation for the investigation of equations

and inclusions for compositions of relations.
6. An instructive reformulation of the definition of quasi-contractions of M.

Bessenyei.

1. Two Galois connections derived from a single relation

Definition 1.1. Let R be a relation on one set X to another Y . Then, according
to [36] , for any A ⊆ X and B ⊆ Y we define

(1) A ∈ IntR (B ) if R [A ] ⊆ B ,

(2) A ∈ ClR (B ) if R [A ] ∩B 6= ∅ ,

(3) A ∈ LbR (B ) and B ∈ UbR (A) if A×B ⊆ R .

Remark 1.2. The above relations are not independent of each other, since by [36]
we have

(1) UbR = LbR−1 = Lb−1
R ,

(2) LbR =
(
ClRc

)c , (3) IntR =
(
ClR ◦ C

)c ,

where C is the complement function defined by C (B ) = B c = Y \B for all B ⊂ Y .
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Definition 1.3. By identifying singletons with their elements, we may naturally
consider X as a subset of P (X ) , and we may briefly define

(1) lbR (B ) = X ∩ LbR(B ) , (2) clR (B ) = X ∩ ClR (B ) ,

(3) ubR (A) = Y ∩UbR(A) , (4) intR (B ) = X ∩ IntR (B ) ,

for all A ⊆ X and B ⊆ Y .

Remark 1.4. Concerning the latter relations, by [36] , we have

(1) ubR (A) = Rc [A ]c =
⋂

x∈A R(x) ,

(2) clR (B ) = R−1 [B ] , (3) intR (B ) = R−1 [B c ]c ,

for all A ⊆ X and B ⊆ Y .

However, it is now more important to note that, under the above notations, we
also have the following two closely related theorems.

Theorem 1.5. If

FR (A) = clR−1(A) and GR (B ) = intR (B )

for all A ⊆ X and B ⊆ Y , then FR and GR establish a Galois connection between
the posets P(X) and P(Y ) .

Theorem 1.6. If

FR (A) = ubR (A) and GR (B ) = lbR (B )

for all A ⊆ X and B ⊆ Y , then FR and GR establish a Galois connection between
P(X) and the dual of P(Y ) .

Proof. For this, by the definitions of [7] and [43] , we need only show that, for any
A ⊆ X and B ⊆ Y , we have

FR (A) ⊆−1 B ⇐⇒ A ⊆ GR (B ) ,

However, by the corresponding definitions, it is clear that

FR (A) ⊆−1 B ⇐⇒ B ⊆ FR (A) ⇐⇒ B ⊆ ubR (A)

⇐⇒ ∀ b ∈ B : A×{b} ⊂ R ⇐⇒ ∀ a ∈ A : {a}×B ⊂ R

⇐⇒ A ⊂ lbR (B ) ⇐⇒ A ⊆ GR (B ) .

Remark 1.7. The upper and lower bound Galois connection, described in Theorem
2, was first studied by Birkhoff [2, p. 122] under the name polarities.

While, the closure–interior Galois connection, described in Theorem 1, seems to
have been only mentioned in Exercise 7.18 of Davey and Priestly [7, p. 172] .

The above mentioned authors, and Ganter and Wille [10, p. 17] used quite
different notations. The novelty of our treatment lies mainly in the use of the
techniques of simple relator spaces (X, Y )(R) .
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2. Galois connections can be used to establish some
properties of recession cones

Definition 2.1. Let X be a vector space over K. For any A ⊆ K and U , V ⊆ X,
define

AU =
{
αx : α ∈ A, x ∈ U

}
and U + V =

{
x+ y : x ∈ U, y ∈ V

}
.

Remark 2.2. Now, in particular, for any α ∈ K and x ∈ X, we may also define

αU = {α}U , Ax = A {x} , x+ U = {x}+ U , U + x = U + {x} .
Moreover, we may also naturally define −U = (−1 )U and U − V = U + (−V ).

Thus, the above elementwise linear operations have several useful properties. For
instance, one can easily see that only two axioms of a vector space may fail to hold
for the family P(X) of all subsets of X.

Remark 2.3. In the sequel, by identifying singletons with their elements, we shall
consider X as a subset of P(X) .

Thus, if F is a function of P(X) to itself, then we may simply write

F (x) = F
(
{x}

)
and F [A ] =

{
F (a) : a ∈ A

}
for all x ∈ X and A ⊆ X.

Moreover, we can easily see that the function F is union-preserving if and only
if F (A) =

⋃
F [A ] for all A ⊆ X.

The following definition has been mainly motivated by a recent lecture of González
[13] about certain applications of recession cones.

Definition 2.4. Let X be a vector space over K, A ⊆ K and B ⊆ X. For any
U , V ⊆ X, define

F (U ) = F(A,B)(U ) = AU +B

and
G(V ) = G(A,B)(V ) = intF (V ) =

{
x ∈ X : F (x) ⊆ V

}
.

Remark 2.5. If in particular K = R and A = R+, with R+ = [ 0 ,+∞ [ , then

G(B ) =
{
x ∈ X : R+ x+B ⊆ B

}
=

{
x ∈ X : ∀ α ≥ 0 , y ∈ B : αx+y ∈ B

}
is just the recession cone rec(B ) originally introduced by Rockafellar [22, p. 61 ]
only for convex subsets of R n.

The appropriateness of the above definitions is apparent from the following

Theorem 2.6. The functions F and G establish a Galois connection between the
poset P(X) and itself.

Proof. For this, by the definitions of [7] and [43] , we need only show that, for any
U , V ⊆ X, we have

F (U ) ⊂ V ⇐⇒ U ⊆ G(V ) .
However, by the corresponding definitions, it is clear that

F (U ) ⊂ V ⇐⇒ AU +B ⊆ V ⇐⇒ ∀ x ∈ U : Ax+B ⊆ V

⇐⇒ ∀ x ∈ U : F (x) ⊆ V ⇐⇒ U ⊆ G(V ).
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From this theorem, by using the theory of Galois connections, we can imme-
diately derive several theorems on the functions F and G , and their compositions.

For instance, from Theorem 2.6, by using a particular case of [43, Theorem 5.6] ,
we can immediately derive

Corollary 2.7. For any V ⊂ X, U = G(V ) is the largest subset of X such that
F (U ) ⊆ V .

Hence, it is clear that in particular we also have

Corollary 2.8. U = G(B ) is the largest subset of X such that F (U ) ⊆ B .

Remark 2.9. Thus, under the notation of Remark 2.5, U = rec(B ) is the largest
subset of X such that R+ U +B ⊆ B .

3. Galois connections can be used to solve some
equations and extremum problems

In [37] , having in mind a terminology of Birkhoff [2] , we have introduced the
following

Definition 3.1. If X is a set and ≤ is a relation on X, then the ordered pair
X (≤) = (X, ≤ ) is called a goset (generalized ordered set), and we usually write
X instead of X (≤)

Remark 3.2. Thus, the goset X(≤ ) may, for instance, be called reflexive if the
relation ≤ is reflexive on X.

Moreover, a reflexive and transitive goset may be called a proset (preordered
set). And, an antisymmetric proset may be called a poset (partially ordered set).

Remark 3.3. If X(≤ ) is a goset, and X ′ = X and ≤′=≤−1 , then the goset
X ′ (≤′ ) will be called the dual of X(≤ ) . The dual goset inherits several properties
of the original goset.

In [49] , slightly extending the ideas of Ore [19] , Schmidt [24, p. 209] , Blyth
and Janowitz [3, p. 11] , and the present author [43] on Galois connections, residu-
ated mappings, and increasingly normal functions, we have introduced the following

Definition 3.4. Let X and Y be gosets. Then, for any functions f of X to Y
and g of Y , we say that :

(1) f is increasingly upper g–seminormal if f(x) ≤ y implies x ≤ g(y) for
all x ∈ X and y ∈ Y ,

(2) f is increasingly lower g–seminormal if x ≤ g(y) implies f(x) ≤ y for all
x ∈ X and y ∈ Y .

Remark 3.5. Now, the function f may be naturally called increasingly g-normal
if it is both increasingly upper and lower g–seminormal.

Moreover, a function f of X to Y may, for instance, be naturally called increa-
singly normal if it is increasingly g-normal for some function g of Y to X.

Remark 3.6. By [49, Theorem 8.7] , an increasingly normal function of a transitive
goset to a reflexive one is already increasing.

Therefore, a function f of X to Y may, for instance, be naturally called
decreasingly normal if it is increasing normal as a function of X to Y ′.
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In this respect, it is also worth mentioning that, by using the above definitions,
we can easily prove the following dualization principle.

Theorem 3.7. If f is an increasingly upper (lower) g–seminormal function of
one goset X to another Y , then g is an increasingly lower (upper) f–seminormal
function of Y ′ to X ′.

Proof. If f is increasingly upper g–seminormal, then by the corresponding defini-
tions it is clear that y ≤′ f(x) =⇒ f(x) ≤ y =⇒ x ≤ g (y) =⇒ g (y) ≤′x for all
y ∈ Y and x ∈ X Therefore, g is increasingly lower f–seminormal as a function
of Y ′ to X ′.

Remark 3.8. By using this priciple, the properties of the functions g and f ◦ g
can be immediately derived from those of f and g ◦ f .

For instance, from Remark 3.6, we can at once see that if f is an increasingly
g–normal function of a reflexive goset to a transitive one, then g is increasing.
( Thus, condition (i) in Definition 3.1 of [12, p. 18] is superfluous.)

However, it now more important to note that, by using the results of [49] , we
can also easily prove the following two theorems.

Theorem 3.9. If f is an increasingly lower g–seminormal function of a reflexive
goset to an antisymmetric one Y , ψ = f ◦ g , and y ∈ Y such that y ≤ ψ(y) ,
then y = ψ(y) and y ∈ f [X ] .

Proof. By [49, Theorem 8.14] , we have ψ(y) ≤ y . Hence, because of the assump-
tion y ≤ ψ(y) and the antisymmetry of Y , we can infer that y = ψ(y) . Therefore,
y = f

(
g(y)

)
, and thus y ∈ f [X ] also holds.

Theorem 3.10. If f is an increasingly g–normal function of a transitive goset X
to a reflexive one Y , ψ = f ◦ g , and y ∈ f [X ] , then y ≤ ψ(y) .

Proof. Since y ∈ f [X ] , there exists x ∈ X such that y = f(y) . Hence, by
using the reflexivity of Y , we can infer that f(y) ≤ y . Hence, by using the upper
g–seminormality of f , we can infer that x ≤ g(y) . Hence, by using Remark 3.6,
we can infer that f(x) ≤ f

(
g(y)

)
, and thus y ≤ ψ(y) .

Now, as an immediate consequence of this theorem, we can also state

Corollary 3.11. If f is an increasingly g–normal function of a transitive goset
to a reflexive and antisymmetric one Y , ψ = f ◦ g , and y is a maximal element
of f [X ] , then ψ(y) = y .

Moreover, as an immediate consequence of Theorems 3.9 and 3.10, we can state

Theorem 3.12. If f is an increasingly g–normal function of a proset X to a
reflexive and antisymmetric goset Y and ψ = f ◦ g , then for any y ∈ Y the
following assertions are equivalent :

(1) y ∈ f [X ] , (2) y = ψ(y) , (3) y ≤ ψ(y) .

Remark 3.13. Note that if f is only an increasingly g–normal function of a
proset X to a reflexive goset Y , then by [49, Corollary 8.19] ψ = f ◦ g is already
a semiinterior operation on Y .

While, in order that ψ could be an interior operation on Y , by [49, Theorem
8.24] it seems necessary to assume that f be an increasingly g–normal function of
one proset X to another Y .
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For instance, from Theorem 3.12, by using Theorem 1.5, we can at once drive

Corollary 3.14. If R is a relation on X to Y , then for any B ⊆ Y the following
assertions are equivalent :

(1) B = clR−1(A) for some A ⊆ X,

(2) B = clR−1

(
intR(B )

)
, (3) B ⊆ clR−1

(
intR(B )

)
.

Hence, by Remark 1.4, it is clear that equivalently we also have

Corollary 3.15. If R is a relation on X to Y , then for any B ⊆ Y the following
assertions are equivalent :

(1) B = R [A ] for some A ⊆ X,

(2) B = R
[
R−1 [B c ] c

]
, (3) B ⊆ R

[
R−1 [B c ] c

]
.

Remark 3.16. Moreover, it can also be easily seen that (1) is also equivalent to
the assertion that, for each y ∈ B , there exists x ∈ X such that y ∈ R(x) ⊆ B .

Theorem 3.12 gives a necessary and sufficient condition in order that, for some
y ∈ Y , the equation y = f(x) could have a solution. For this, it says that y should
be a ψ–open element of Y .

Therefore, Galois connection can be used to decide on the solvability of certain
equations. In this respect, it is also worth mentioning that they can also be used
to solve some extremal problems. Namely, by [49, Theorem 9.9] , we have the
following

Theorem 3.17. Let X and Y be prosets. Then, for a function f of X to Y and
a function g of Y to X, the following assertions are equivalent :

(1) f is increasingly g–normal ,

(2) f is increasing and g(y) ∈ max
(
Intf (y)

)
for all y ∈ Y .

Remark 3.18. Here, by [49, Definition 4.1] , we have

Intf (y) = {x ∈ X : f(x) ≤ y}
for all y ∈ Y .

Therefore, if (1) holds, then for any y ∈ Y we can state that x = g(y) is a
largest element of X such that f(x) ≤ y .

For instance, from Theorem 3.17, by using Theorem 1.5, we can at once drive

Corollary 3.19. If R is a relation on X to Y and B ⊆ Y , then A = intR(B )
is the largest subset of X such that clR−1 [A ] ⊆ B .

Hence, by Remark 1.4, it is clear that equivalently we also have

Corollary 3.20. If R is a relation on X to Y and B ⊆ Y , then A = R−1 [B c ] c

is the largest subset of X such that R [A ] ⊆ B .

Remark 3.21. Finally, we note that, from a specialization of Theorem 3.17 to
regular functions [49, Theorem 10.9] , by using Theorem 1.5 we can easily get two
quite similar maximality results.

However, it is now important to note that, from Corollary 3.20, by using the
box product F � G of relations F on X to Z and G on Y to W , defined such
that (F �G)(x, y ) = F (x)×G(y) for all x ∈ X and y ∈ Y , we can immediately
derive some results of [48] .
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4. Which continuity properties force an additive function
of the real line to be linear?

Some particular cases of the following problem have formerly been also considered
in a talk by Zoltán Boros.

If f is an additive function of R , then having in mind some classical results
[23] we may naturally ask the question that : Which one of the following basic
continuity (or monotonicity) properties of f forces f to be linear?

For this, let R and S be relators (arbitrary families of relations) on R . That
is, R , S ⊆ P ( R2 ) . Moreover, suppose that � = (� i )4i=1 is a family of unary
operations on the family P 2( R2 ) = P

(
P ( R2 )

)
of all relators on R .

Then, analogously to [33] (or [52] ), the function f may be naturally called
�–continuous (or �–monotonic) with respect to the relators R and S if(

S �1 ◦ f
)�2

⊆
(
f ◦ R�3

)�4

,

where the two compositions are to be taken elementwise.
Here, R may, for instance, be R≤ = {≤} , or the family Rd of all surroundings

Bd
r =

{
(x, y ) ∈ R2 : d(x, y ) < r

}
with r > 0 , and thus also R(d,≤) = Rd ∪R≤ .

Moreover, if A is the family of all open, fat, or measurable subsets of R , then
the family RA of all Pervin relations [42] RA = A2∪Ac×X, with A ∈ A , is also
an important relator on R. Note that RA is a preorder, while Rd is a tolerance
relator on R .

Moreover, for any relator R on R , R� may, for instance, be

R∞ =
{
R∞ : R ∈ R

}
or R∂ =

{
S ⊂ R 2 : S∞ ∈ R

}
,

where R∞ =
⋃∞

n=0 R
n is the smallest preorder relation on R containing R .

Furthermore, R� may, for instance, be

RM =
{
S ⊆ R 2 : ∀ x ∈ R : ∃ R ∈ R : ∃ y ∈ R : R(y) ⊆ S(x)

}
,

and thus also RM∞ or RM∂ . But, the operation M ∂ is already not idempotent.
Here, we can note that a relator R on R may be called properly well-chained

[20] if R∞ = {R2} . Moreover, R may be called paratopologically compact [30]
if for each R ∈ RM there exists a finite subset A of R such that R = R [A ] .

Furthermore, it is also noteworthy that RM is the largest relator on R inducing
the same family of fat subsets of R as R does. However, the family of all open
sets induced by R fails to have such a property. ( See [47, Example 5.17] .)

Note that, in our former definition of �–continuity, f may be an arbitrary
relation on R . However, in that case the term ”�–continuous” has to be replaced
by ”upper �–semicontinuous”.

Finally, we note that one may also naturally consider quite similar questions in
connection with subadditive and superadditive relations, and also with subadditive
and superadditive functions (and their Pexiderizations).

However, it can be easily seen that if R is a superhomogeneous, superadditive
relation of R , then R is already linear. And thus, it is either a linear function or
the whole space R2 . ( For some more general results, see [34] .)
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5. A functional equationist motivation for the investigation of
equations and inclusions for compositions of relations

If X and Y are groupoids, and F , G , and H are relations on X to Y , then
as a straightforward generalization of the Pexiderization of the classical Cauchy
equation [23] we may naturally consider the relational equation

(1) H (x+ y ) = F (x) + G(y)

for all x, y ∈ X.
Such an equation, for set-valued functions, has only been investigated by K.

Nikodem [18] , W. Smajdor [26] , and A. Smajdor [25] . ( See also [11, 5] .) While,
additive relations and set-valued functions have already been intensively studied by
several algebraists and functional equationists. ( See [45, p. 638] .)

Now, by defining φ(x, y ) = x+ y for all x, y ∈ X, we can at once see that

H (x+ y ) = H
(
φ(x, y )

)
= (H ◦ φ )(x, y )

for all x, y ∈ X.
Moreover, by defining

K (x, y ) = (F �G )(x, y ) = F (x)×G(y)

for all x, y ∈ X, and ψ (z , w) = z + w for all z , w ∈ Y , we can easily see that

F (x) +G(y) =
{
z + w : z ∈ F (x) , w ∈ G(y)

}
=

{
z + w : (z , w) ∈ F (x)×G(y)

}
=

{
ψ (z , w) : (z , w) ∈ K (x, y )

}
= ψ [K (x, y ) ] = (ψ ◦K )(x, y )

for all x, y ∈ X.
Thus, our original equation (1) can be written in the form that

(H ◦ φ )(x, y ) = (ψ ◦K )(x, y )

for all x, y ∈ X. Therefore, we actually have

(2) H ◦ φ = ψ ◦K .

Now, the ordered triple (F , G, H) may be naturally called additive, subadditive
and superadditive if

H ◦ φ = ψ ◦K , H ◦ φ ⊆ ψ ◦K , ψ ◦K ⊆ H ◦ φ .

However, since we have

(F �G )[A ] = G ◦A ◦ F −1

for all A ⊆ X×Y , instead of equation (2) and the corresponding inclusions, it is
more convenient to investigate first the more general equation

(3) H ◦R ◦ Φ = Ψ ◦ S ◦K
and the corresponding inclusions, with some relations Φ on X 2 to X, Ψ on Y 2

to Y , R on X to itself, and S on Y 2 to itself.
Note that by taking R = ∆X and S = ∆Y 2 equation (2) can be obtained from

(3). Moreover, before studying equation (3), it is convenient to investigate first the
inclusions

H ◦R ◦ Φ ⊆ L and L ⊆ Ψ ◦ S ◦K ,
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with a relation L of X 2 to Y .
This was actually the subject of our former paper [48] , refused by the Semigroup

Forum, where the reader can find three further substantial reasons and several
references for studying compositional equations and inclusions for relations.

In the light of our present note, it would be instructive to solve the classical
Cauchy equation f ◦ϕ = ϕ◦f , where f is a function of R to itself and ϕ(x+y ) =
x + y for all x, y ∈ R , by using the notations and techniques of the theory of
relations and relators (families of relations) .

6. An instructive reformulation of the definition of
quasi-contractions of M. Bessenyei

In his talk [1] , to get a common generalization of the corresponding definitions
of Ćirić [6] and Matkowski [17] , M. Bessenyei introduced the following

Definition 6.1. Let X(d) be a metric space, R+ = [ 0, +∞ [ , and ϕ a function
of R+ to itself.

Then, a function f of X to itself is called a ϕ–quasi-contraction if

d
(
f(x) , f(y)

)
≤ ϕ

(
diam

{
x, y , f(x) , f(y)

})
holds true for all x, y ∈ X.

Remark 6.2. Hence, by noticing that { f(x) , f(y)} = f [ {x, y} ] and

d
(
f(x) , f(y)

)
= diam

{
f(x) , f(y)

}
= diam ( f [ {x, y} ] ) ,

and thus

diam ( f [ {x, y} ] ) ≤ ϕ
(
diam

(
{x, y } ∪ f [ {x, y} ]

) )
for all x, y ∈ X, we can naturally arrive at the following straightforward genera-
lization of Definition 6.1.

Definition 6.3. Let X and ϕ be as in Definition 6.1, and moreover A a family
of nonvoid, bounded subsets of X.

Then, a relation F on X is called a (ϕ, A)–quasi-contraction if, for each
A ∈ A , the image F [A] is also bounded and

diam (F [A ] ) ≤ ϕ
(
diam

(
A ∪ F [A ]

))
.

Note that here the first diameter can be −∞ if F [A ] = ∅ . But, the second
one is in R+ since A is nonvoid, and both A and F [A ] are bounded. Therefore,
the first one cannot also be +∞ .

Remark 6.4. Hence, by Remark 6.2, we can see that the function f , considered
in Definition 6.1, is a ϕ–quasi-contraction if and only if it is a (ϕ, A)–quasi-
contraction with A being the family of all two-point subsets of X.

However, the functional particular case of Definition 6.3 is not a genuine genera-
lization of Definition 6.1, since we have the following

Theorem 6.5. Let A be the family of all one- or two-point subsets of X, and B
an arbitrary family of nonvoid, bounded subsets of X. Moreover, assume that ϕ
is an increasing function of R+ and F is a (ϕ, A)–quasi-contraction relation on
X such that F [B ] is bounded for all B ∈ B . Then, F is a also (ϕ, B)–quasi-
contraction relation on X.
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Proof. If B ∈ B and z , w ∈ F [B ] , then there exist x, y ∈ B such that z ∈ F (x)
and w ∈ F (y) . Hence, by defining A = {x, y} , we can at once see that A ∈ A
such that A ⊂ B and {z , w} ⊆ F [A ] .

Now, by the increasingness of the functions diam and ϕ , and the assumed
contractivity of F , it is clear that

d(z , w) = diam
(
{z , w}

)
≤ diam (F [A ] )

≤ ϕ
(
diam

(
A ∪ F [A ]

))
≤ ϕ

(
diam

(
B ∪ F [B ]

))
.

Therefore, we also have

diam (F [B ] ) = sup
{
d(z , w) : z , w ∈ F [B ]

}
≤ ϕ

(
diam

(
B ∪ F [B ]

))
for all B ∈ B , and thus the required assertion is also true.

Remark 6.6. Note that if in particular F is a function of X to itself in Theorem
6.5, then A may be only the family of all two-point subsets of X . Namely, in this
case, we have diam (F [A ] ) = 0 for all one-point subset A of X .

Now, analogously to Definition 6.3, we may also naturally introduce the following

Definition 6.7. Let X, ϕ , and A be as in Definitions 6.1 and 6.3. Then, a
relation F of X to itself is called a (ϕ, A)–semi-contraction if, for each A ∈ A ,
the image F [A ] is also bounded and

diam (F [A ] ) ≤ ϕ
(
diam(A) + d

(
A, F [A ]

)
+ diam

(
F [A ]

))
.

Note that here the distance and all the diameters are finite since now we also
have F [A ] 6= ∅ since A 6= ∅ and F (x) 6= ∅ for all x ∈ X.

This terminology can partly be justified by the following

Theorem 6.8. Let X, ϕ , and A be as in Definitions 6.1 and 6.3. Moreover,
assume that ϕ is an increasing function of R+ and F is a (ϕ, A)–quasi-contraction
relation of X. Then, F is also a (ϕ, A)–semi-contraction relation of X

Proof. By using a well-known property of the diameter, we can see that

diam
(
A ∪ F [A ]

)
≤ diam(A) + d

(
A, F [A ]

)
+ diam

(
F [A ]

)
.

Therefore, by the assumed contractivity property of F and the increasingness of
ϕ , we have

diam (F [A ] ) ≤ ϕ
(
diam

(
A ∪ F [A ]

))
≤ ϕ

(
diam(A) + d

(
A, F [A ]

)
+ diam

(
F [A ]

))
.

Therefore, the required assertion is also true.

Remark 6.9. Now, to prove some analogues of the theorems of Bessenyei [1]
for semi-contraction functions and relations, one has certainly require some much
stronger regularity properties of the control function ϕ .

However, it would be more interesting to generalize the results of Bessenyei [1]
to relator spaces analogously to [46]. Unfortunately, we have been planning to
prove such an extension of a theorem of Kupka [14] for more than twenty years.
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[35] Á. Száz, An extension of Baire’s category theorem to relator spaces, Math. Morav. 7 (2003),

73–89.
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[50] Á. Száz, A particular Galois connection between relations and set functions, Acta Univ.

Sapientiae, Math. 6 (2014), 73–91.
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