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AN INSTRUCTIVE TREATMENT OF SINGLETONS,
DOUBLETONS AND ORDERED PAIRS

ÁRPÁD SZÁZ

Abstract. By using the usual definitions, we give some necessary and

sufficient conditions for various inclusions among singletons, doubletons,

and ordered pairs. Thus, we can prove some criteria for equalities of these

fundamental objects in a more convenient way.

1. Introduction

Throughout this paper, X will denote an arbitrary set. And, the reader will
only be assumed to be familiar with the most primitive notions and notations
of set theory.

As is customary, for any a, b ∈ X , the set {a} = {x ∈ X : x = a} ,

{a, b} = {a} ∪ {b} and (a, b) =
{
{a} , {a, b}

}
is called a singlelon, doubleton and ordered pair, respectively.

By giving some necessary and sufficient conditions for various inclusions
among these fundamental objects, we shall prove some criteria for equalities of
these objects in a more convenient way.

In particular, by using some preliminary results on inclusions, we shall show
that, for any a, b, c, d ∈ X , the following assertions are equivalent :

(1) (a, b) = (c, d) , (2) a = c and b = d .

A nice direct proof of the implication (1) =⇒ (2) can be found at a recent
page of Wikipedia [ https://proofwiki.org/wiki/Equality−of−Ordered−Pairs ] .

Similar direct proofs of the above implication were formerly also included in
the classical books of Halmos [2, p. 23] and Suppes [4, p. 32] , for instance.

While, Bourbaki [1, p. 72] took the implication (1) =⇒ (2) as an axiomatic
definition of an ordered pair with a remark that (2) also implies (1).

1991 Mathematics Subject Classification. 03E20, 03E99.

Key words and phrases. Singletons, doubletons, ordered pairs, inclusions and equalities.

The work of the authors has been supported by the Hungarian Scientific Research Fund

(OTKA) Grant NK-81402.

1
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The present ingenious set theoretic definition of ordered pairs was first
introduced by Kazimierz Kuratowski in 1921.

It simplifies some former similar definitions given by Norbert Wiener and
Felix Hausdorff in 1914. ( See [ http://en.wikipedia.org/wiki/Ordered−pair ] .)

The importance of ordered pairs lies mainly in the fact that Cartesian
products, and hence also binary relations and functions, can only be defined
precisely in terms of ordered pairs.

If A, B ⊆ X, then an arbitrary subset R of the product set

A×B =
{

(a, b) : a ∈ A , b ∈ B
}

is called a relation between the sets A and B .

This precise definition of relations is due to Charles Sanders Peirce by Kelley
[3, p. 7] . In contrast to this definition, Bourbaki [1, p. 76] would call the
ordered triple (R, A, B ) to be a correspondence between A and B .

2. Inclusions between singletons and doubletons

Definition 2.1. For any a ∈ X, the set

{a} = {x ∈ X : x = a } .

is called the singleton constructed from the element a .

Thus, we evidently have the following

Theorem 2.2. For any a, b ∈ X , the following assertion are equivalent :

(1) a = b , (2) a ∈ {b} , (3) b ∈ {a} .

Remark 2.3. Thus, in particular we have a ∈ {a} for all a ∈ X.

Remark 2.4. Moreover, we can note that, for any a ∈ X and A ⊆ X, the
following assertions are equivalent :

(1) a ∈ A , (2) {a} ⊆ A .

Hence, by Theorem 2.2, it is clear that we also have the following

Theorem 2.5. For any a, b ∈ X, the following assertions are equivalent :

(1) a = b, (2) {a} = {b}, (3) {a} ⊆ {b}, (4) {b} ⊆ {a}.

Remark 2.6. Since, (2) implies (1), the singleton {a} can usually be identi-
fied with the element a .

Thus, the set X can usually be considered as a subset of its power set

P(X) =
{

A : A ⊆ X
}

.
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Definition 2.7. For any a, b ∈ X, the set

{a, b} = {a} ∪ {b}

is called the doubleton constructed from the elements a and b .

Remark 2.8. Thus, in particular we have

{a, a} = {a} ∪ {a} = {a}

for all a ∈ X.

Therefore, by Remark 2.6, the doubleton {a, a} can also be identified with
the element a .

Remark 2.9. Moreover, we also have

{a, b} = {a} ∪ {b} = {b} ∪ {a} = {b, a}

for all a, b ∈ X.

By using the corresponding definitions, Remark 2.4 and Theorem 2.2, we
can easily establish the following

Theorem 2.10. For any a, b, c ∈ X, the following assertions are equivalent :

(1) c ∈ {a, b} , {c} ⊆ {a, b} , (2) either c = a or c = b .

Remark 2.11. Thus, in particular we have

a ∈ {a, b} and b ∈ {a, b}

for all a, b ∈ X.

Remark 2.12. Moreover, we can note that, for any a, b ∈ X and A ⊆ X,
the following assertions are equivalent :

(1) a, b ∈ A , (2) {a, b} ⊆ A .

Now, in addition to Theorem 2.10, we can also easily prove the following

Theorem 2.13. If a, b, c, d ∈ X such that a 6= b , then the following asser-
tions are equivalent :

(1) {a, b} = {c, d} , (2) {a, b} ⊆ {c, d} ,

(3) either a = c , b = d or a = d , b = c .

Proof. Clearly, (1) always implies (2). Moreover, by Remark 2.11, we have
a, b ∈ {a, b} . Therefore, if (2) holds, then we also have a, b ∈ {c, d} . Hence,
by using Theorem 2.10, we can infer that either a = c or a = d , and either
b = c or b = d .
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However, if a = c holds, then because of a 6= b we can only have b = d .
While, if a = d holds, then again by a 6= b we can only have b = c . Therefore,
(3) also holds. Moreover, from Remark 2.9, it is clear that (3) always implies
(1).

From this theorem, we can immediately derive the following

Corollary 2.14. If a, b, c ∈ X such that a 6= b , then the following
assertions are equivalent :

(1) b = c , (2) {a, b} = {a, c} , (3) {a, b} ⊆ {a, c} .

Proof. Clearly, the implications (1) =⇒ (2) =⇒ (3) are always true. Moreover,
if (3) holds, then by using the assumption a 6= b and Theorem 2.13 we can see
that (1) holds.

Now, by using our former observations, we can also easily prove the following
counterpart of Theorem 2.10.

Theorem 2.15. For any a, b, c ∈ X, the following assertions are equivalent :

(1) {a, b} = {c} , (2) {a, b} ⊆ {c} , (3) a = c , b = c .

Proof. Clearly, (1) implies (2). Moreover, if (2) holds, then by Remark 2.8 we
also have {a, b} ⊆ {c, c} . Now, if a 6= b , then by Theorem 2.13 we can see
that a = c and b = c , and thus a = b . This contradiction proves that a = b .

Thus, by Remark 2.8, we now have

{a} = {a, a} = {a, b} ⊆ {c, c} = {c} .

Hence, by Theorem 2.5, we can already see that a = c . Thus, since a = b ,
assertion (3) also holds. On the other hand, if (3) holds, then by Remark 2.8
it is clear that (1) also holds.

From this theorem, it is clear that in particular we also have

Corollary 2.16. If a, b ∈ X such that a 6= b , then {a, b} 6⊆ {a} .

Proof. Namely, if {a, b} ⊆ {a} holds, then by Theorem 2.15 we necessarily
have b = a .

3. Inclusions between ordered pairs

Definition 3.1. For any a, b ∈ X, the set

(a, b) =
{
{a} , {a, b}

}
is called the ordered pair constructed from the elements a and b .
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Remark 3.2. Thus, in particular, for any a ∈ X, we have

(a, a) =
{
{a} , {a, a }

}
=

{
{a} , {a}

}
=

{
{a}

}
.

Therefore, by Remark 2.6, the pair (a, a) could also be identified with the
element a . However, if in particular X is the set of all real numbers, then
each a ∈ X is usually identified with the pair (a, 0) .

Now, by using Theorem 2.10, we can also prove the following

Theorem 3.3. For any a, b, c ∈ X, the following assertions are equivalent :

(1) a = c , (2) (c, c) ⊆ (a, b) .

Proof. If (1) holds, then by Theorem 2.5, Remark 2.11 and Definition 3.1 we
have

{c} = {a} ∈
{
{a} , {a, b}

}
= (a, b) .

Hence, by using Remarks 3.2 and 2.4, we can already infer that

(c, c) =
{
{c}

}
⊆ (a, b) ,

and thus (2) also holds.

While, if (2) holds, then by Remark 3.2 and Definition 3.1, we have{
{c}

}
⊆

{
{a} , {a, b}

}
.

Hence, by using Theorem 2.10, we can infer that either

{c} = {a} or {c} = {a, b} .

Hence, by using Theorems 2.5 and 2.15, we can already infer that either

c = a or c = a , c = b .

Thus, in particular (1) also holds.

Moreover, as a counterpart of Theorem 2.13, we can also prove the following

Theorem 3.4. If a, b, c, d ∈ X such that a 6= b , then the following asser-
tions are equivalent :

(1) (a, b) = (c, d) , (2) (a, b) ⊆ (c, d) , (3) a = c , b = d .

Proof. Clearly, (1) always implies (2). Moreover, if (2) holds, then by Definition
3.1 we have {

{a} , {a, b}
}
⊆

{
{c} , {c, d}

}
.

Moreover, by the assumption a 6= b and Corollary 2.16, we necessarily have
{a, b} 6⊆ {a} , and thus {a} 6= {a, b} .
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Hence, by using Theorem 2.13, we can see that either

{a} = {c} , {a, b} = {c, d} or {a} = {c, d} , {a, b} = {c} .

However, if {a, b} = {c} holds, then by Theorem 2.15 we have a = c and
b = c , and thus also a = b . Therefore, because of the assumption a 6= b , we
necessarily have

{a} = {c} and {a, b} = {c, d} .

Hence, by using Theorem 2.5, we can infer that a = c , and thus

{a, b} = {a, d} .

Hence, by using the assumption a 6= b and Corollary 2.14 we can already infer
that b = d . Therefore, (3) also holds. Moreover, it is clear that (3) always
implies (1).

From this theorem, analogously to Corollary 2.14, we can immediately derive

Corollary 3.5. If a, b, c ∈ X such that a 6= b , then the following
assertions are equivalent :

(1) b = c , (2) (a, b) = (a, c) , (3) (a, b) ⊆ (a, c) .

Moreover, as a close analogue of Theorem 2.15, we can also prove

Theorem 3.6. For any a, b, c ∈ X, the following assertions are equivalent :

(1) (a, b) = (c, c) , (2) (a, b) ⊆ (c, c) , (3) a = c , b = c .

Proof. Clearly, (1) implies (2). Moreover, if (2) holds, then by Definition 3.1
and Remark 3.2, we have {

{a} , {a, b}
}
⊆

{
{c}

}
.

Hence, by using Theorem 2.15, we can infer that

{a} = {c} and {a, b} = {c} .

Hence, by using Theorem 2.15, we can infer that a = c and b = c , and thus
(3) also holds. Moreover, if (3) holds, then it is clear that (1) also holds.

Now, as an immediate consequence of Theorems 3.4 and 3.6, we can state

Corollary 3.7. For any a, b, c, d ∈ X, the following assertions are equi-
valent :

(1) (a, b) = (c, d) , (2) a = c , b = d .
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Proof. If a 6= b , then from Theorem 3.4 we can see that (1) implies (2).
Moreover, if a = b , then (1) gives only that (a, a) = (c, d) . Hence, by using
Theorem 3.6, we can already infer that a = c and a = d. Thus, since a = b ,
assertion (2) also holds.

Concerning ordered pairs, it is also worth mentioning the following

Theorem 3.8. For any a, b ∈ X, we have

(1)
⋂

(a, b) = {a} , (2)
⋃

(a, b) = {a, b} .

Proof. Namely,⋂
(a, b) =

⋂ {
{a} , {a, b}

}
= {a} ∩ {a, b} = {a}

and ⋃
(a, b) =

⋃ {
{a} , {a, b}

}
= {a} ∪ {a, b} = {a, b} .

Remark 3.9. In view of our present treatment, together with a family S of
subsets of X, it seems also reasonable to investigate the families

DS =
{

A ∪B : A , B ∈ S
}

and
PS =

{
{A, A ∪B} : A , B ∈ S

}
.
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