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SETS AND POSETS WITH INVERSIONS

Árpád Száz

Abstract. In this paper, we investigate unary operations ∨ , ∧ and ♦ on a set X

satisfying

x = x∨∨ = x∧∧ and x♦ = x∨∧ = x∧∨

for all x ∈ X .

Moreover, if in particular X is a meet-semilattice, then we also investigate the

operations defined by

xH = x ∧ x∨ , xN = x ∧ x∧ , x� = x ∧ x♦ ;

x• = x∨ ∧ x∧ , x♣ = x∨ ∧ x♦ , x♠ = x∧ ∧ x♦ ;

and xF = x ∧ x∨ ∧ x∧ ∧ x♦ for all x ∈ X.

Our prime example for this is the set-lattice P (U , V ) of all relations on one
group U to another V equipped with the operations defined such that

F ∨ (u) = F (−u ) , F ∧ (u) = −F (u) and F ♦ (u) = −F (−u )

for all F ⊂ X×Y and u ∈ U .

1. A few basic facts on relations and functions

A subset F of a product set X×Y is called a relation on X to Y . If in
particular F ⊂ X 2, then we may simply say that F is a relation on X . In
particular, ∆X = {(x, x) : x ∈ X} is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) =

{
y ∈ Y : (x, y) ∈ F

}
and F [A ] =

⋃
a∈A F (a) are called the images

of x and A under F , respectively.
Instead of y ∈ F (x) sometimes we shall also write xF y . Moreover, the sets

DF =
{

x ∈ X : F (x) 6= ∅
}

and RF = F [X ] = F [DF ] will be called the
domain and range of F , respectively.

If in particular DF = X, then we say that F is a relation of X to Y , or that F
is a total relation on X to Y . While, if RF = Y , then we say that F is a relation
on X onto Y .
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If F is a relation on X to Y , then F =
⋃

x∈X {x}×F (x) =
⋃

x∈DF
{x}×F (x) .

Therefore, a relation F on X to Y can be naturally defined by by specifying F (x)
for all x ∈ X, or by specifying DF and F (x) for all x ∈ DF .

For instance, if F is a relation on X to Y , then the inverse relation F −1 of F
can be naturally defined such that F −1(y) = {x ∈ X : y ∈ F (x) } for all y ∈ Y .
Thus, we also have F −1 = {(y, x) : (x, y) ∈ F } .

Moreover, if in addition G is a relation on Y to Z , then the composition relation
G ◦F of G and F can be naturally defined such that (G ◦F )(x) = G [F (x) ] for
all x ∈ X. Thus, we also have (G ◦ F ) [A ] = G [F [A ] ] for all A ⊂ X.

Now, a relation F on X may be called reflexive, transitive and antisymmetric
if ∆X ⊂ F , F ◦ F ⊂ F and F ∩ F −1 ⊂ ∆X , respectively. Moreover, a relation
having all these properties may be called a partial order relation.

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f (x) = y in place of f (x) = {y} .

The inverse f−1 of a function f is a function if and only if f is injective in the
sense that f (x) 6= f (y) for all x, y ∈ Df with x 6= y . Moreover, for a function
g , we have g = f−1 if and only if g ◦ f = ∆Df

and f ◦ g = ∆Dg .
A function ? of a set X to itself is called a unary operation on X. Moreover, a

function ∗ of X 2 to X is called a binary operation in X. For any x, y ∈ X, we
usually write x? or x? and x ∗ y in place of ?( x) and ∗

(
(x, y)

)
, respectively.

A unary operation ? on a set X is called an involution if x = x?? for all x ∈ X.
Hence, it is clear that ? is injective and onto X. Moreover, we can also note that
a unary operation ? is an involution if and only if ? = ?−1.

If X is a group, then for any A, B ⊂ X, we may also naturally define A+B =
{x + y : x ∈ A , y ∈ B} and −A = {−x : x ∈ A } . However, thus the family
P (X ) of all subsets of X is only a monoid with involution.

Finally, we note that a relation F on one group X to another Y will be called
here odd, even and symmetric-valued if F (−x ) = −F (x) , F (−x ) = F (x) and
−F (x) = F (x) hold for all x ∈ X, respectively.

2. A few basic facts on partially ordered sets

According to Birkhoff [ 1 ] , a set X, equipped with a partially order relation
≤ , is called a poset (partially ordered set). In this case, for any x, y ∈ X, we
write x < y if x ≤ y and x 6= y .

A poset X is called a chain (totally ordered set) if for any x, y ∈ X we have
either x ≤ y or y ≤ x . Thus, X is a chain if and only if at least (exactly) one of
the alternatives x < y , x = y and y < x holds.

If X is a poset with the relation ≤ , then X is also a poset with the inverse
relation ≥ of ≤ . This poset is denoted by X∗ and called the dual of X. Thus, if
in particular X is a chain, then X∗ is also a chain.

If X and Y are posets, then for any (x, y) , (z, w) ∈ X×Y we may naturally
write (x, y) ≤ (z, w) if x ≤ z and y ≤ w . Thus, X×Y is also a poset. However,
if X and Y are chains, then X×Y need not be a chain.

Therefore, under the above assumptions, it is frequently more convenient to write
(x, y) ≤ (z, w) if either x < z or x = z and y ≤ w . Thus, X×Y is also a
poset. Moreover, if X and Y are chains, then X×Y is also a chain.
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A function f of one poset X to another Y is called increasing if f (x) ≤ f (y) for
all x, y ∈ X with x ≤ y. Moreover, f is called strictly increasing if f (x) < f (y)
for all x, y ∈ X with x < y .

Decreasing functions can be defined quite similarly. Note that a function f of
one poset X to another Y is decreasing if and only if it is an increasing function
of X∗ to Y , or equivalently of X to Y ∗.

If X is a poset, then for any α ∈ X and A ⊂ X we write α ∈ lb(A) if
α ≤ x for all x ∈ A . Moreover, we write min(A) = A ∩ lb(A) . Note that, by the
antisymmetry of the inequality, min(A) is at most a singleton.

The expressions ub(A) and max(A) can be defined quite similarly. Moreover,
we may write inf (A) = max

(
lb(A)) and sup (A) = min

(
ub(A)) . Thus, for

instance, inf (A) = max
(
lb(A)

)
= lb(A) ∩ ub

(
lb(A)

)
.

Therefore, by identifying singletons with their elements, we have α = inf (A) if
and only if α ∈ lb(A) and α ∈ ub

(
lb(A)

)
. That is, α ≤ x for all x ∈ A and

β ≤ α for all β ∈ lb(A) , i. e. , for all β ∈ X with β ≤ x for all x ∈ A .
A poset X is called a meet-semilattice (join-semilattice) if x ∧ y = inf {x, y }

( x∨y = sup {x, y} ) exists for x, y ∈ X. Thus, X is a join-semilattice if and only
if X∗ is a meet-semilattice.

In particular, a poset X is called a lattice if it is both a meet-semilattice and a
join-semilattice. Note that every chain X is a lattice. Namely, if x, y ∈ X such
that x ≤ y , then we evidently have x = x ∧ y and y = x ∨ y .

Concerning increasing functions, we can easily prove the following theorems.

Theorem 2.1. For any function f of one poset X to another Y , the following
assertions hold :

(1) If f is strictly increasing, then f is increasing ;

(2) If f is injective and increasing, then f is strictly increasing.

Proof. To prove (2), assume that the conditions of (2) hold and x, y ∈ X such that
x < y . Then, by the definition of < , we have x ≤ y and x 6= y . Hence, since
f is increasing and injective, we can infer that f (x) ≤ f (y) and f (x) 6= f (y) .
Therefore, f (x) < f (y) also holds. This shows that f is strictly increasing.

Theorem 2.2. For any function f of a chain X to a poset Y , the following
assertions hold :

(1) If f is strictly increasing, then f is injective ;

(2) If f is injective and increasing, then f−1 is strictly increasing .

Proof. To prove (2), assume that the conditions of (2) holds and z, w ∈ f [X ]
such that z < w . Then, by the definition of f [X ] , there exist x y ∈ X such that
z = f (x) and w = f (y) . Hence, since z < w , and thus z 6= w , we can see that
x 6= y . Thus, since X is totally ordered, we have either x < y or y < x .

However, if y < x were true, then by Theorem 2.1 we would have f (y) < f (x) ,
and hence w < z . This contradicts the assumption that z < w . Namely, if both
z < w and w < z were true, then z ≤ w and w ≤ z , and thus z = w would also
be true.

Therefore, we can only have x < y . However, since z = f (x) and w = f (y) ,
we also have x = f−1(z) and y = f−1(w) by the injectivity of f . Therefore,
f−1(z) < f−1(w) also holds. This shows that f−1 is strictly increasing.
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Theorem 2.3. If f is an injective increasing function of one poset X onto another
Y such that f−1 is also increasing, then for any A ⊂ X we have

(1) f
(
inf (A)

)
= inf

(
f [A ]

)
if at least one of these infima exists ;

(2) f
(
sup(A)

)
= sup

(
f [A ]

)
if at least one of these suprema exists .

Proof. To prove the first part of (1), suppose that A ⊂ X such that α = inf (A)
exists. Then, for any x ∈ A , we have α ≤ x , and hence f (α) ≤ f (x) . Therefore,
f (α) ∈ lb

(
f [A ]

)
.

On the other hand, if β ∈ lb
(
f [A ]

)
, then for any x ∈ A , we have β ≤ f ( x) ,

and hence f−1(β) ≤ x . Therefore, f−1(β) ∈ lb (A) , and thus f−1(β) ≤ α .
Hence, we can infer that β ≤ f (α) , and thus f (α) ∈ ub

(
lb

(
f [A ]

))
also holds.

The above arguments show that f (α) = max
(
lb

(
f [A ]

))
= inf

(
f [A ]

)
, and

thus the required equality is also true.
The second part of (1) can be proved quite similarly. Moreover, it can also easily

derived from the first part of (1) by taking f−1 and f [A ] in place of f and A ,
respectively.

Corollary 2.4. If f is an injective increasing function of one poset X onto
another Y such that f−1 is also increasing, then for any x, y ∈ X we have

(1) f ( x ∧ y ) = f (x) ∧ f (y) if X and Y are meet-semilattices ;

(2) f (x ∨ y) = f (x ) ∨ f (y) if X and Y are join-semilattices .

Remark 2.5. Note that if for instance f is a function of one poset X to another
Y such that f

(
x ∧ y ) = f (x ) ∧ f (y) whenever x, y ∈ X such that x ∧ y exits,

then f is necessarily increasing.

3. Sets with inversions

Definition 3.1. Let X be a set, and assume that ∨ , ∧ and ♦ are unary operations
on X such that

x = x∨∨ = x∧∧ and x♦ = x∨∧ = x∧∨

for all x ∈ X. Then, we say that X is a set with inversions ∨ , ∧ and ♦ .

The introduction of the above definition has been suggested by the following
obvious examples.

Example 3.2. Let R be the set of all real numbers, and for any x ∈ R define

x∨ = −x , x∧ =
{

0 if x = 0 ,

x−1 if x 6= 0 ,
and x♦ =

{
0 if x = 0 ,

−x−1 if x 6= 0 .

Then, R is a set with inversions ∨ , ∧ and ♦ .

Example 3.3. Let C = R2, and for any z = (u, v) ∈ C define

z∨ = (−u, v) , z∧ = (u,−v) and z♦ = (−u,−v) .

Then, C is a set with inversions ∨ , ∧ and ♦ .
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Remark 3.4. Note that z∧ and z♦ are just the complex conjugate and the
ordinary negative of z , respectively.

Example 3.5. Let U and V be groups, and for any function f of U to V and
u ∈ U define

f ∨(u) = f (−u ) , f ∧(u) = −f (u ) and f ♦(u) = −f (−u ) .

Then, the family V U of all functions f of U to V is a set with inversions ∨ , ∧

and ♦ .

Remark 3.6. Note that, for any u ∈ U and v ∈ V , we have

(u, v) ∈ f ♦ ⇐⇒ v = f ♦(u) ⇐⇒ v = −f (−x )

⇐⇒ −v = f (−u ) ⇐⇒ (−u, −v) ∈ f ⇐⇒ −(u, v) ∈ f .

Therefore, f ♦ is just the global negative of f .

Remark 3.7. The global negative f ♦ has to be carefully distinguished from the
pointwise one f ∧ despite that both can be naturally denoted by −f .

Namely, for instance, if ∆ = ∆U is the identity function of U , then ∆♦ = ∆ .
But, ∆∧ = ∆ if and only if −u = u , or equivalently 2u = 0 for all u ∈ U .

Example 3.8. Let U and V be groups, and for any relation F on X to Y and
u ∈ U define

F ∨(u) = F (−u ) , F ∧(u) = −F (u) and F ♦(u) = −F (−u ) .

Then, the family P (U×V ) of all relations F on U to V is a set with inversions
∨ , ∧ and ♦ .

Remark 3.9. It can be easily seen that

F ∨ =
{
(−u, v) : (u, v) ∈ F

}
, F ∧ =

{
(u,−v) : (u, v) ∈ F

}
,

and
F ♦ =

{
(−u,−v) : (u, v) ∈ F

}
.

Therefore, Example 3.8 is a generalization of not only Example 3.5, but also
Example 3.3 too.

Example 3.10. Let U be a group, and for any relation F on U define

F # =
{
(−v,−u) : (u, v) ∈ F

}
.

Then, the family P (U 2) of all relations F on U is a set with inversions −1 , ♦

and # .

Remark 3.11. It can be easily seen that(
F −1

)∨ =
(
F ∧

)−1 and
(
F ∨

)−1 =
(
F −1

)∧
.

Moreover, we can also note that above relations are, in general, quite different.
Therefore, we cannot write ∨ or ∧ in place of ♦ in the above example.

However, from the above examples we can immediately get several further
examples with the help of the following
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Theorem 3.12. If X is a set with inversions ∨ , ∧ and ♦ , then

(1) X is set with inversions ∧ , ∨ and ♦ ;

(2) X is set with inversions ∨ , ♦ and ∧ .

Proof. To check (2), note that if x ∈ X, then we have

x∨♦ = x∨∨∧ = x∧ and x♦∨ = x∧∨∨ = x∧ .

Hence, we can see that x♦♦ = x♦∨∧ = x∧∧ = x . Therefore, (2) is also true.

Remark 3.13. By the above theorem, for instance, we can also state that X is a
set with inversions ♦ , ∨ and ∧ .

Moreover, as an immediate consequence of Definition 3.1 and Theorem 3.12, we
can also state

Theorem 3.14. If X is a set with inversions ∨ , ∧ and ♦ , then the operation
� = ∨ , ∧ or ♦ is injective and onto X. Moreover, we have � = �−1.

4. Fixed points of the operations ∨ , ∧ and ♦

Definition 4.1. If X is a set and � is an unary operation on X, then we write

X� =
{

x ∈ X : x = x�
}

,

Example 4.2. Thus, according to Example 3.2, we have

R∨ = {0} , R∧ = {−1, 0, 1 } and R♦ = {0} .

Example 4.3. Moreover, according to Example 3.3, we have

C∨ = {0}× R , C∧ = R×{0} and C♦ = {(0, 0)} .

Example 4.4. Furthermore, according to Example 3.8, for any relation F on U
to V we have

(1) F ∈ P (U , V )♦ ⇐⇒ F is odd ;

(2) F ∈ P (U , V )∨ ⇐⇒ F is even ;

(3) F ∈ P (U , V )∧ ⇐⇒ F is symmetric-valued .

Concerning the set X∨ , we can easily prove the following
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Theorem 4.5. If X is a set with inversions ∨ , ∧ and ♦ , then for any x ∈ X,
the following assertions are equivalent :

(1) x ∈ X∨ ; (2) x∧ = x♦ ;

(3) x∨ ∈ X∨ ; (4) x∧ ∈ X∨ ; (5) x♦ ∈ X∨ .

Proof. By the corresponding definitions and Theorem 3.14, it is clear that

x∨ ∈ X∨ ⇐⇒ x∨ = x∨∨ ⇐⇒ x∨ = x ⇐⇒ x ∈ X∨ ,

x∧ = x♦ ⇐⇒ x∧ = x∨∧ ⇐⇒ x = x∨ ⇐⇒ x ∈ X∨ .

Therefore, (3) and (2) are equivalent to (1).
Moreover, by the corresponding definitions and Theorem 3.12, it is clear that

x∧ ∈ X∨ ⇐⇒ x∧ = x∧∨ ⇐⇒ x∧ = x♦ ,

x♦ ∈ X∨ ⇐⇒ x♦ = x♦∨ ⇐⇒ x♦ = x∧ .

Therefore, (4) and (5) are equivalent to (2), and thus also to (1).

Analogously to the above theorem, we can also easily prove the following theo-
rems which can also be derived from Theorem 4.5 by using Theorem 3.12.

Theorem 4.6. If X is a set with inversions ∨ , ∧ and ♦ , then for any x ∈ X,
the following assertions are equivalent :

(1) x ∈ X∧ ; (2) x∨ = x♦ ;

(3) x∨ ∈ X∧ ; (4) x∧ ∈ X∧ ; (5) x♦ ∈ X∧ .

Theorem 4.7. If X is a set with inversions ∨ , ∧ and ♦ , then for any x ∈ X,
the following assertions are equivalent :

(1) x ∈ X♦ ; (2) x∨ = x∧ ;

(3) x∨ ∈ X♦ ; (4) x∧ ∈ X♦ ; (5) x♦ ∈ X♦ .

Now, as an immediate consequence of the latter theorem and Example 4.4, we
can also state

Theorem 4.8. For any relation F on one group U to another V , the following
assertions are equivalent :

(1) F is odd ; (2) F = F ♦ ; (3) F ∨ = F ∧ ;

(3) F∨ is odd ; (4) F ∧ is odd ; (5) F ♦ is odd .

Hence, it is clear that in particular, we also have

Corollary 4.9. If f is an additive function of one group X to another Y , then
f = f ♦ .

Remark 4.10. The latter statements, under different notation, have already been
established in our former paper [ 3 ] .
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5. Posets with inversions

Definitin 5.1. A poset X, with inversions ∨ , ∧ and ♦ , is said to be of

(1) ↑↑–type if both ∨ and ∧ are increasing ;

(2) ↑↓–type if ∨ is increasing and ∧ is decreasing .

Some further similar types of posets with inversions are to be defined analogously.

Example 5.2. If U and V are groups, then the family P (U , V ) of all relations
on U to V , equipped with the ordinary set inclusion and the operations ∨ , ∧ and
♦ defined in Example 3.8, is an ↑↑–type poset with inversions.

Example 5.3. If U is a group, then the family P (U 2) of all relations on U ,
equipped with the ordinary set inclusion and the operations −1 , ♦ and # considered
in Example 3.10, is also an ↑↑–type poset with inversions.

Example 5.4. If U is a group and V is a partially ordered group, then the family
V U of all functions of U to V , equipped with the pointwise inequality and the
operations ∨ , ∧ and ♦ defined in Example 3.5, is an ↑↓–type poset with inversions.

Example 5.5. The family R of all real numbers, equipped with the usual inequa-
lity and the operations ∨ , ∧ and ♦ defined in Example 3.2, is a ↓↓–type poset
with inversions.

Example 5.6. If the family C of all complex numbers is equipped with either the
coordinate-wise inequality or the lexicographic order considered in Section 2, then
the operations ∨ and ∧ defined in Example 3.3 are not monotonic. However, the
operation ♦ defined there is decreasing.

Namely, if for instance z = (0, 0) and w = (1, 0) , then z < w , w∨ =
(−1, 0) < (0, 0) = z∨ and z∧ = (0, 0) < (1, 0) = w∧ . Thus, ∨ is not increasing
and ∧ is not decreasing.

Moreover, if for instance ω = (0, 1) , then z < ω , z∨ = (0, 0) < (0, 1) = ω∨

and ω∧ = (0,−1) < (0, 0) = z∧ . Thus, ∨ is not decreasing and ∧ is not
increasing.

Now, as some immediate consequences of Definition 5.1 and Theorems 3.12, we
can also state the following two theorems.

Theorem 5.7. If X is an ↑↑–type poset with inversions ∨ , ∧ and ♦ , then

(1) X is an ↑↑–type poset with inversions ∧ , ∨ and ♦ ;

(2) X is an ↑↑–type poset with inversions ∨ , ♦ and ∧ .

Theorem 5.8. If X is an ↑↓–type poset with inversions ∨ , ∧ and ♦ , then

(1) X is a ↓↑–type poset with inversions ∧ , ∨ and ♦ ;

(2) X is also an ↑↓–type poset with inversions ∨ , ♦ and ∧ .

Moreover, an immediate consequence Theorem 3.14 and Corollary 2.4 , we can
also at once state the following
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Theorem 5.9. If X is an ↑↑–type poset with inversions ∨ , ∧ and ♦ , then for
any x, y ∈ X and � ∈ { ∨ , ∧ , ♦} , we have

(1) ( x ∧ y )� = x� ∧ y� if X is a meet-semilattice ;

(2) ( x ∨ y )� = x� ∨ y� if X is a join-semilattice .

Furthermore, by using Theorems 3.14 and a dual of Theorem 2.3, we can also
easily establish the following

Theorem 5.10. If X is an ↑↓–type lattice with inversions ∨ , ∧ and ♦ , then for
any x, y ∈ X and � ∈ { ∧ , ♦} , we have

(1) ( x ∧ y )∨ = x∨ ∧ y∨ ; (2) ( x ∨ y )∨ = x∨ ∨ y∨ ;

(3) ( x ∧ y )� = x� ∨ y� ; (4) (x ∨ y )� = x� ∧ y� .

6. Compound operations on meet-semilattices with inversions

Definition 6.1. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , then for
any x ∈ X we write

xH = x ∧ x∨ , xN = x ∧ x∧ , x� = x ∧ x♦ ;

x• = x∨ ∧ x∧ , x♣ = x∨ ∧ x♦ , x♠ = x∧ ∧ x♦ .

Remark 6.2. If X is a join-semilattice with inversions ∨ , ∧ and ♦ , then for any
x ∈ X we may naturally write xH = x ∨ x∨.

Namely, if in particular X is a lattice with inversions ∨ , ∧ and ♦ , then for any
x ∈ X we have xH ≤ x ≤ xH .

Concerning the above operations, we can easily prove the following

Theorem 6.3. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ such that
∨ is increasing, then for any x ∈ X we have

(1) xH = ( x∨)H = (xH)∨ ; (2) x♣ = ( x∨)N = (xN)∨ ;

(3) x• = ( x∨)� = ( x�)∨ ; (4) x� = ( x∨)• = ( x•)∨ ;

(5) xN = ( x∨)♣ = (x♣)∨ ; (6) x♠ = ( x∨)♠ = (x♠)∨ .

Proof. By the corresponding definitions and Theorem 3.12, we have

(x∨)H = x∨ ∧ x∨∨ = x∨ ∧ x = xH ; (x∨)N = x∨ ∧ x∨∧ = x∨ ∧ x♦ = x♣ ;

(x∨)� = x∨ ∧ x∨♦ = x∨ ∧ x∧ = x• ; ( x∨)♠ = x∨∧ ∧ x∨♦ = x♦ ∧ x∧ = x♠ .

Moreover, by Theorem 3.14 and Corollary 2.4, we also have

( xH)∨ = (x ∧ x∨)∨ = x∨ ∧ x∨∨ = x∨ ∧ x = xH ;

( xN)∨ = (x ∧ x∧)∨ = x∨ ∧ x∧∨ = x∨ ∧ x♦ = x♣ ;

( x�)∨ = (x ∧ x♦)∨ = x∨ ∧ x♦∨ = x∨ ∧ x∧ = x• ;

(x♠)∨ = (x∧ ∧ x♦)∨ = x∧∨ ∧ x♦∨ = x♦ ∧ x∧ = x♠ .
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Therefore, assertions (1)–(3) and (6) are true.
Moreover, from (2) and (3), we can immediately infer that

(x♣)∨ = (xN)∨∨ = xN ; ( x•)∨ = (x�)∨∨ = x� ;

(x∨)♣ = ( x∨∨)N = xN ; ( x∨)• = ( x∨∨)� = x� .

Therefore, assertions (5) and (4) are also true.

Analogously to the above theorem, we can also easily prove the following theo-
rems which can also be derived from Theorem 6.3 by using Theorem 3.12.

Theorem 6.4. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ such that
∧ is increasing, then

(1) x♠ = ( x∧)H = (xH)∧ ; (2) xN = ( x∧)N = (xN)∧ ;

(3) x• = ( x∧)� = (x�)∧ ; (4) x� = ( x∧)• = (x•)∧ ;

(5) x♣ = ( x∧)♣ = ( x♣)∧ ; (6) xH = ( x∧)♠ = (x♠)∧ .

Theorem 6.5. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ such that
♦ is increasing, then

(1) x♠ = ( x♦)H = (xH)♦ ; (2) x♣ = ( x♦)N = (xN)♦ ;

(3) x� = ( x♦)� = (x�)♦ ; (4) x• = ( x♦)• = (x•)♦ ;

(5) xN = ( x♦)♣ = (x♣)♦ ; (6) xH = ( x♦)♠ = (x♠)♦ .

7. A further important operation on meet-semilattices
with inversions

Definition 7.1. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , then for
any x ∈ X we write

xF = x ∧ x∨ ∧ x∧ ∧ x♦ .

Remark 7.2. If X is a join-semilattice with inversions ∨ , ∧ and ♦ , then for any
x ∈ X we may also naturally write xF = x ∨ x∨ ∨ x∧ ∨ x♦ .

A simple computation gives the following

Theorem 7.3. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , then for
any x ∈ X we have

xF = xH ∧ x♠ = xN ∧ x♣ = x• ∧ x� .

Proof. By the corresponding definitions and the commutativity and associativity
of the operation ∧ , we have

xF = x ∧ x∨ ∧ x∧ ∧ x♦ = ( x∨ ∧ x∧) ∧ ( x ∧ x♦) = x• ∧ x� .

The proof of the other equalities are even more obvious.

Now, in addition to Theorems 6.3–6.5, we can easily prove the following
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Theorem 7.4. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) xH = xHH ; (2) x♠ = xH♠ = x♠H ;

(3) xF = xH� = x� H with � ∈ { N , � , • , ♣ } .

Proof. By the corresponding definitions and Theorems 6.3–6.5 and 7.3, we have

xHH = xH ∧ (xH)∨ = xH ∧ xH = xH ; xHN = xH ∧ ( xH)∧ = xH ∧ x♠ = xF ;

xH� = xH ∧ (xH)♦ = xH ∧ x♠ = xF ; xH• = (xH)∨ ∧ ( xH)∧ = xH ∧ x♠ = xF ;

xH♣ = (xH)∨ ∧ ( xH)♦ = xH ∧ x♠ = xF ; xH♠ = ( xH)∧ ∧ ( xH)♦ = x♠ ∧ x♠ = x♠ ;

and quite similarly
xNH = xN ∧ ( xN)∨ = xN ∧ x♣ = xF ;

x�H = x� ∧ (x�)∨ = x� ∧ x• = xF ; x•H = x• ∧ ( x•)∨ = x• ∧ x� = xF ;

x♣H = x♣ ∧ ( x♣)∨ = x♣ ∧ xN = xF ; x♠H = x♠ ∧ (x♠)∨ = x♠ ∧ x♠ = x♠ .

Analogously to Theorem 7.3, we can also easily prove the following theorems.

Theorem 7.5. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) xN = xNN ; (2) x♣ = xN♣ = x♣N ;

(3) xF = xN� = x� N with � ∈ { � , • , ♠ } .

Theorem 7.6. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) x� = x�� ; (2) x• = x�• = x•� ;

(3) xF = x�� = x� � with � ∈ {♣ , ♠ } .

Theorem 7.7. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) x� = x•• ; (2) xF = x•� = x� • with � ∈ {♣ , ♠ } .

Theorem 7.8. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) xN = x♣♣ ; (2) xF = x♣♠ = x♠♣ ; (3) xH = x♠♠ .

Finally, we note that the following theorem is also true.

Theorem 7.9. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X we have

(1) xF =
(
x�

)
F

=
(
xF

)� with � ∈ { ∨ , ∧ , ♦ } ;

(2) xF = x�F = xF� with � ∈ { H , N , � , • , ♣ , ♠ , F } .
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8. Maximality properties of the compound operations

Theorem 8.1. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
∨ is increasing, then for any x ∈ X we have

xH = max
{

y ∈ X∨ : y ≤ x
}

.

Proof. Define A =
{

y ∈ X∨ : y ≤ x
}

. Then, we can easily see that xH ∈ A .
Namely, by the corresponding definitions, we have xH = x ∧ x∨ ≤ x . Moreover,
by Theorem 6.3, we also have xH = (xH)∨ , and thus xH ∈ X∨.

On the other hand, if y ∈ A , then we have y ∈ X∨ and y ≤ x . Hence, by
using the corresponding definitions, we can infer that y = y∨ ≤ x∨ . Therefore,
y ≤ x ∧ x∨ = xH , and thus xH ∈ ub(A) . This shows that xH = max (A) , and
thus the required equality is also true.

From the above theorem, by using Theorems 6.3–6.5 and 7.4 and 7.9, we can
immediately derive the following corollaries.

Corollary 8.2. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
∨ is increasing, then for any x ∈ X we have

(1) xH = max
{

y ∈ X∨ : y ≤ x∨
}

;

(2) x♠ = max
{

y ∈ X∨ : y ≤ x�
}

with � ∈ { ∧ , ♦ } .

Corollary 8.3. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and
♦ , then for any x ∈ X we have

(1) xH = max
{

y ∈ X∨ : y ≤ xH

}
;

(2) xF = max
{

y ∈ X∨ : y ≤ x�

}
with � ∈ { N , � , • , ♣ , F } .

Analogously to the above theorem, we can also easily prove the following theo-
rems which can also be derived from Theorem 8.1 by using Theorem 3.12.

Theorem 8.4. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
∧ is increasing, then for any x ∈ X we have

xN = max
{

y ∈ X∧ : y ≤ x
}

.

Hence, by Theorems 6.4, 6.3 and 7.5 and 7.9, it is clear that we also have the
following corollaries.

Corollary 8.5. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
∧ is increasing, then for any x ∈ X we have

(1) xN = max
{

y ∈ X∧ : y ≤ x∧
}

;

(2) x♣ = max
{

y ∈ X∧ : y ≤ x�
}

with � ∈ { ∨ , ♦ } .
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Corollary 8.6. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and
♦ , then for any x ∈ X we have

(1) xN = max
{

y ∈ X∧ : y ≤ xN

}
;

(2) xF = max
{

y ∈ X∧ : y ≤ x�

}
with � ∈ { � , • , ♠ , F } .

Theorem 8.7. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
♦ is increasing, then for any x ∈ X we have

x� = max
{

y ∈ X♦ : y ≤ x
}

.

Hence, by Theorems 6.5, 6.3, 6.4 and 7.6, it is clear that we also have the
following corollaries.

Corollary 8.8. If X is a meet-semilattice with inversions ∨ , ∧ and ♦ , such that
♦ is increasing, then for any x ∈ X we have

(1) x� = max
{

y ∈ X♦ : y ≤ x♦
}

;

(2) x• = max
{

y ∈ X♦ : y ≤ x�
}

with � ∈ { ∨ , ∧ } .

Corollary 8.9. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and
♦ , then for any x ∈ X we have

(1) x� = max
{

y ∈ X♦ : y ≤ x�

}
;

(2) xF = max
{

y ∈ X♦ : y ≤ x�

}
with � ∈ {♣ , ♠ , F } .

9. Some further results on the fixed points
of the operations ∨ , ∧ and ♦

Theorem 9.1. If � is an increasing involution on a poset X, then

X� =
{

x ∈ X : x ≤ x�
}

=
{

x ∈ X : x� ≤ x
}

.

Proof. Define A =
{

x ∈ X : x ≤ x�
}

. Then, by the definition of X� and the
reflexivity of the inequality in X, it is clear that X� ⊂ A .

Moreover, if x ∈ A , then we have x ∈ X and x ≤ x� . Hence, by using the
corresponding properties of ∨ , we can infer that x� ≤ x�� = x . Therefore, we
actually have x = x� , and thus x ∈ X� . This shows that A ⊂ X� .

Therefore, X� = A , and thus the first part of the theorem is true. The second
part of the theorem can be proved quite similarly.

Theorem 9.2. If � is an increasing involution on a meet-semilattice X and
x� = x ∧ x� for all x ∈ X, then X� = X� .

Proof. If x ∈ X� , then x� = x ∧ x� = x ∧ x = x , and thus x ∈ X� . Therefore,
X� ⊂ X� .

While, if x ∈ X� , then x = x� = x ∧ x� ≤ x� . Hence, by Theorem 9.1, we
can see that x ∈ X� . Therefore, X� ⊂ X� is also true.
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Remark 9.3. Note that if X and � are as in the above theorems, then X is
already an ↑↑–type poset with inversions either � , ∆X and � or � , � and � .

Therefore, the above theorems can be immediately derived from the correspon-
ding results for the operation ∨ .

Theorem 9.4. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X the following assertions are equivalent :

(1) x ∈ X∨ ; (2) x∨ = xH ; (3) x∧ = x♠ ; (4) x♦ = x♠ .

Proof. By Theorems 4.5, 9.2 and 6.3–6.5, we can see that

x ∈ X∨ ⇐⇒ x∨ ∈ X∨ ⇐⇒ x∨ ∈ XH ⇐⇒ x∨ = (x∨)H ⇐⇒ x∨ = xH ;

x ∈ X∨ ⇐⇒ x∧ ∈ X∨ ⇐⇒ x∧ ∈ XH ⇐⇒ x∧ = (x∧)H ⇐⇒ x∧ = x♠ ;

x ∈ X∨ ⇐⇒ x♦ ∈ X∨ ⇐⇒ x♦ ∈ XH ⇐⇒ x♦ = (x♦)H ⇐⇒ x♦ = x♠ .

Analogously to the above theorem, we can also easily prove the following theo-
rems which can also be derived from Theorem 9.4 by using Theorem 3.12.

Theorem 9.5. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X the following assertions are equivalent :

(1) x ∈ X∧ ; (2) x∧ = xN ; (3) x∧ = x♣ ; (4) x♦ = x♣ .

Theorem 9.6. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then for any x ∈ X the following assertions are equivalent :

(1) x ∈ X♦ ; (2) x♦ = x� ; (3) x∧ = x• ; (4) x♦ = x• .

Finally, we note that, in addition to Theorem 9.2, the following theorem can also
be easily proved.

Theorem 9.7. If X is an ↑↑–type meet-semilattice with inversions ∨ , ∧ and ♦ ,
then

(1) X• = X∨ ∩ X∧ ; (2) X♣ = X∨ ∩ X♦ ;

(3) X♠ = X∧ ∩ X♦ ; (4) XF = X∨ ∩ X∧ ∩ X♦ .

Proof. If x ∈ X∨ ∩ X∧ , then x ∈ X∨ and x ∈ X∧ . Therefore, x• = x∨ ∩ x∧ =
x ∩ x = x , and thus x ∈ X• . Consequently, X∨ ∩ X∧ ⊂ X• .

While, if x ∈ X• , then x = x• = x∨ ∧ x∧ . Therefore, x ≤ x∨ and x ≤ x∧ .
Hence, by using Theorem 9.1, we can infer that x ∈ X∨ and x ∈ X∧ , and thus
x ∈ X∨ ∩ X∧ . Consequently, X• ⊂ X∨ ∩ X∧ also holds.

Therefore, (1) is true. The proofs of (2)–(4) are quite similar.
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