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RELATION THEORETIC OPERATIONS ON

BOX AND TOTALIZATION RELATIONS

Árpád Száz

Abstract. In this paper, we shall only study the most simple relation theoretic

operations on box and totalization relations

Γ(A, B) = A×B and F̃ = F ∪ Γ(Dc
F

, Y ) ,

where A ⊂ X , B ⊂ Y and F is a relation on X to Y with domain DF . The

intersection convolutions, and several algebraic and topological properties of these

relations, will be studied elsewhere.

This line of investigations is mainly motivated by the fact that the relations

Γ̃(A, B) = Γ̃(A, B) and Γ̃A = Γ̃(A, A)

play an important role in the uniformization of various topological structures such as

proximities, closures and topologies, for instance. Moreover, the relations F̃ can be

used to prove a useful reduction theorem for the intersection convolution of relations.
The latter operation allows of a natural treatment of the Hahn-Banach type extension

theorems.

1. Set theoretic operations on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F is a relation on X to itself, then we may simply say that F is a relation on X.
Thus, a relation F on X to Y is also a relation on X ∪ Y .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y) ∈ F} and F [A ] =

⋃
a∈A F (a) are called the images of

x and A under F , respectively.

Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [X ] are called
the domain and range of F , respectively. If in particular X = DF , then we say
that F is a relation of X to Y , or that F is a total relation on X to Y . While, if
Y = RF , then we say that F is a relation on X onto Y .

If F is a relation on X to Y and U ⊂ DF , then the relation F |U = F ∩(U×Y )
is called the restriction of F to U . Moreover, if F and G are relations on X to Y
such that DF ⊂ DG and F = G |DF , then G is called an extension of F .
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In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f (x) = y instead of f (x) = {y} .

Concerning relations, we shall only quote here the following basic theorems
from [ 17 ] .

Theorem 1.1. If F is a relation on X to Y , then

F =
⋃

x∈X

{x }×F (x) =
⋃

x∈DF

{x }×F (x) .

Remark 1.2. By this theorem, a relation F on X to Y can be naturally defined
by specifying F (x) for all x ∈ X, or by specifying DF and F (x) for all x ∈ DF .

Corollary 1.3. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F ⊂ G ;

(2) F (x) ⊂ G(x) for all x ∈ X ; (3) F (x) ⊂ G(x) for all x ∈ DF .

Corollary 1.4. If F and G are relations on X to Y , then the following assertions
are equivalent :

(1) F = G ;

(2) F (x) = G(x) for all x ∈ X ;

(3) DF = DG and F (x) = G(x) for all x ∈ DF .

Theorem 1.5. If F is a relation on X to Y , then for any A , B ⊂ X we have

(1) F [A ∩B ] ⊂ F [A ] ∩ F [B ] ; (2) F [A ∪B ] = F [A ] ∪ F [B ] .

Theorem 1.6. If F is a relation on X to Y , then for any A , B ⊂ X we have

F [A ] \ F [B ] ⊂ F [A \B ] .

Corollary 1.7. If F is a relation on X onto Y , then for any A ⊂ X we have

F [A ]c ⊂ F [Ac ] .

Remark 1.8. If in particular the inverse F −1 of F , defined in the next section,
is a function, then the equality also holds in Theorems 1.5 and 1.6 and Corollary
1.7.

Theorem 1.9. If F and G are relations on X to Y , then for any x ∈ X we
have

(1)
(
F ∩G

)
( x) = F (x) ∩G(x) ; (2)

(
F ∪G

)
( x) = F (x) ∪G(x) .
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Theorem 1.10. If F and G are relations on X to Y , then for any A ⊂ X we
have

(1)
(
F ∩G

)
[A ] ⊂ F [A ] ∩G [A ] ; (2)

(
F ∪G

)
[A ] = F [A ] ∪G [A ] .

Remark 1.11. Theorems 1.5, 1.9 and 1.10 can be naturally extended to arbitrary
families of sets and relations.

Theorem 1.12. If F and G are relations on X to Y , then for any x ∈ X and
A ⊂ X we have

(1) ( F \G )(x) = F (x) \G(x) ; (2) F [A ] \ G [A ] ⊂ ( F \G ) [A ] .

Corollary 1.13. If F is a relation on X to Y , then for any x ∈ X and A ⊂ X,
with A 6= ∅ , we have

(1) F c(x) = F (x)c ; (2) F [A ] c ⊂ F c [A ] .

Theorem 1.14. If F is a relation on X to Y , then for any A ⊂ X we have

F c [A ] c =
⋂

x∈A

F (x) .

2. Relation theoretic operations on relations

If F is a relation on X to Y , then the relation

F −1 =
{

(y, x ) : (x, y) ∈ F
}

is called the inverse of F .
Moreover, if G is a relation on Y to Z , then the relation

G ◦ F =
{

(x, z ) : ∃ y ∈ Y : (x, y) ∈ F , (y, z) ∈ G
}

is called the composition of G and F .
Concerning inverse and composite relations, we shall only quote here the

following basic theorems.

Theorem 2.1. If F is a relation on X to Y , then for any x ∈ X and y ∈ Y
the following assertions are equivalent :

(1) x ∈ F −1(y) ; (2) y ∈ F ( x) .

Theorem 2.2. If F is a relation on X to Y , then for any x ∈ X and B ⊂ Y
the following assertions are equivalent :

(1) x ∈ F −1 [B ] ; (2) F ( x) ∩B 6= ∅ .

Theorem 2.3. If F is a relation on X to Y , then for any A ⊂ X and B ⊂ Y
the following assertions are equivalent :

(1) A ∩ F −1 [B ] 6= ∅ ; (2) F [A ] ∩ B 6= ∅ .
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Theorem 2.4. If F and G are relations on X to Y , then

(1)
(
F ∩G

)−1 = F −1 ∩ G−1 ; (2)
(
F ∪G

)−1 = F −1 ∪ G−1 .

Theorem 2.5. If F and G are relations on X to Y , then(
F \G

)−1 = F −1 \ G−1 .

Corollary 2.6. If F is a relation on X to Y , then(
F c

)−1 =
(
F −1

)c
.

Theorem 2.7. If F is a relation on X to Y and G is a relation on Y to Z ,
then for any x ∈ X and A ⊂ X we have

(1)
(
G ◦ F

)
(x) = G

[
F (x)

]
; (2)

(
G ◦ F

)
[A ] = G

[
F [A ]

]
.

Theorem 2.8. If F is a relation on X to Y and G is a relation on Y to Z ,
then

( G ◦ F )−1 = F −1◦G−1.

Theorem 2.9. If F and G are relations on X to Y and H is a relation on Y
to Z , then

(1) H ◦
(
F∩G

)
⊂

(
H ◦F

)
∩

(
H ◦G

)
; (2) H ◦

(
F∪G

)
=

(
H ◦F

)
∪

(
H ◦G

)
.

Theorem 2.10. If F is a relation on X to Y and G and H are relations on Y
to Z , then

(1)
(
G∩H

)
◦F ⊂

(
G◦F

)
∩

(
H◦F

)
; (2)

(
G∪H

)
◦F =

(
G◦F

)
∪

(
H◦F

)
.

Hint. The latter two theorems can be most easily proved with the help of Theorems
2.7 and 1.10 and Corollary 1.4.

Remark 2.11. Theorems 2.4, 2.9 and 2.10 can be naturally to arbitrary families
of relations.

Theorem 2.12. If F and G are relations on X to Y and H is a relation on Y
to Z , then (

H ◦ F
)
\

(
H ◦G

)
⊂ H ◦

(
F \G

)
.

Theorem 2.13. If F is a relation on X to Y and G and H are relations on Y
to Z , then (

G ◦ F
)
\

(
H ◦ F

)
⊂

(
G \ H

)
◦ F.

Proof. To check this, note that by Theorems 1.12 and 2.7, we have( (
G ◦ F

)
\

(
H ◦ F

))
(x) =

(
G ◦ F

)
(x) \

(
H ◦ F

)
(x)

= G
[
F (x)

]
\ H

[
F (x)

]
⊂

(
G \ H

) [
F (x)

]
=

((
G \ H

)
◦ F

)
(x)

for all x ∈ X. Therefore, by Corollary 1.4, the required equality is also true.
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Corollary 2.14. If F is a relation on X to Y and G is a relation on Y to Z ,
then

(1)
(
G ◦F

)c ⊂ Gc ◦F if X = DF ; (2)
(
G ◦F

)c ⊂ G ◦F c if Z = RG .

Proof. To check (2), note that if Z = RG , then by Theorem 2.7(
G ◦

(
X×Y

))
(x) = G

[ (
X×Y

)
(x)

]
= G [Y ] = RG = Z =

(
X×Z

)
(x)

for all x ∈ X . Therefore, by Corollary 1.4, G ◦
(
X×Y

)
= X×Z . And thus, by

Theorem 2.12,(
G ◦ F

)c =
(
X×Z

)
\

(
G ◦ F

)
=

(
G ◦

(
X×Y

))
\

(
G ◦ F

)
⊂ G ◦

((
X×Y

)
\ F

)
= G ◦ F c .

Theorem 2.15. If F is a relation on X to Y and G is a relation on Y to Z ,
then for any x ∈ X we have(

Gc ◦ F
)c(x) =

⋂
y∈F (x)

G (y) .

Proof. By Corollary 1.13 and Theorems 2.7 and 1.14, we have(
Gc ◦ F

)c(x) =
(
Gc ◦ F

)
(x)c = Gc [F (x) ]c =

⋂
y∈F (x)

G (y) .

3. Box and totalization relations

Definition 3.1. For any A ⊂ X and B ⊂ Y , we define

Γ(A, B) = A×B .

Remark 3.2. In particular, we shall also write

ΓA = Γ(A, A) and Γ(a, B) = Γ({a} , B)

for any a ∈ X.

Concerning box relations, the following theorems have been proved in [ 17 ] .

Theorem 3.3. If A ⊂ X and B ⊂ Y , then for any x ∈ X we have

Γ(A, B)(x) =
{

B if x ∈ A ,

∅ if x /∈ A .
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Remark 3.4. Thus, in particular if A ⊂ X, then for any x ∈ X we have

ΓA( x) =
{

A if x ∈ A ,

∅ if x /∈ A .

Theorem 3.5. If A ⊂ X and B ⊂ Y , then for any U ⊂ X we have

Γ(A, B) [U ] =
{ ∅ if U ⊂ Ac ,

B if U 6⊂ Ac .

Remark 3.6. Thus, in particular if A ⊂ X, then for any U ⊂ X we have

ΓA [U ] =
{ ∅ if U ⊂ Ac ,

A if U 6⊂ Ac .

Definition 3.7. For any relation F on one set X to another Y , we define

F̃ = F ∪ Γ(D c
F , Y ) .

Remark 3.8. If Y 6= ∅ , then the relation F̃ may be called the natural totalization
of F . Its usefulness will be cleared up by the forthcoming results.

In particular, for any A , B ⊂ X, the totalizations

Γ̃A = Γ̃A and Γ̃(A, B) = Γ̃(A, B)

may be called the Davis–Pervin and the Hunsaker–Lindgren relations on X, respec-
tively.

The latter relations play an important role in the generalized uniformization of
various topological structures such as proximities, closures, topologies, and filters,
for instance. ( See [ 2 ] , [ 10 ] , [ 15 ] and [ 1, pp. 42 , 193 ] , [ 5 ] , [ 11 ] .)

While, the relations F̃ can be used to prove a useful reduction theorem for the
intersection convolution of relations [ 16 ] . The latter operation allows of a natural
treatment of the Hahn-Banach type extension theorems. ( See [ 12 ] and [ 4 ] .)

Concerning totalization relations, the following theorems have been proved
in [ 17 ] .

Theorem 3.9. If F is a relation on X to Y , then for any U ⊂ X we have

F̃ [U ] =
{

F [U ] if U ⊂ DF ,

Y if U 6⊂ DF .

Corollary 3.10. If F is a relation on X to Y , then for some U ⊂ X we have
F [U ] = F̃ [U ] if and only if either U ⊂ DF or F [U ] = Y .

Corollary 3.11. If F is a relation on X to Y , then for some x ∈ X we have
F (x) = F̃ (x) if and only if either x ∈ DF or F (x) = Y .
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Theorem 3.12. If F is a relation on X to Y , then for any x ∈ X we have

F̃ (x) =
{

F ( x) if x ∈ DF ,

Y if x /∈ DF .

Corollary 3.13. If F is a relation on X to Y , then F̃ is an extension of F such
that F = F̃ if and only if F ( x) = Y for all x ∈ Dc

F .

Corollary 3.14. If F is a relation on X to Y and Y 6= ∅ , then F = F̃ if and
only if F is total.

Theorem 3.15. If A ⊂ X and B ⊂ Y , then

Γ̃(A, B) =
{

Γ(X, Y ) if B = ∅ ,

Γ(A, B) ∪ Γ(Ac, Y ) if B 6= ∅ .

Remark 3.16. Thus, in particular if A is a nonvoid subset of X, then

Γ̃A = ΓA ∪ Γ(Ac, X ) .

Moreover, we can at once see that the latter equality is also true for A = ∅ .

Theorem 3.17. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any U ⊂ X ,
with U 6= ∅ , we have

Γ̃(A, B) [U ] =
{

B if U ⊂ A ,

Y if U 6⊂ A .

Remark 3.18. Thus, in particular if A and U are nonvoid subsets of X, then

Γ̃A [U ] =
{

A if U ⊂ A ,

X if U 6⊂ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Corollary 3.19. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any x ∈ X
we have

Γ̃(A, B)(x) =
{

B if x ∈ A ,

Y if x /∈ A .

Remark 3.20. Thus, in particular if A is a nonvoid subset of X and x ∈ X,
then

Γ̃A(x) =
{

A if x ∈ A ,

X if x /∈ A .

Moreover, we can easily see that the latter equality is also true for A = ∅ .

Remark 3.21. Note that if A ⊂ X and ∅ is considered as a subset of Y , then
by Theorems 3.15 and 3.3 we have Γ̃(A, ∅)(x) = Γ(X, Y )(x) = Y for all x ∈ X.
Therefore, the assumption B 6= ∅ is indispensable in Corollary 3.19 and Theorem
3.17.
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4. Inverses of box and totalization relations

Theorem 4.1. If A ⊂ X and B ⊂ Y , then

Γ−1
(A, B) = Γ(B, A) .

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

(y, x) ∈ Γ−1
(A, B) ⇐⇒ (x, y) ∈ Γ(A, B) ⇐⇒ (x, y) ∈ A×B

⇐⇒ x ∈ A , y ∈ B ⇐⇒ (y, x) ∈ B ×A ⇐⇒ (y, x) ∈ Γ(B, A) .

Therefore, the required equality is also true.

Remark 4.2. Thus, in particular if A ⊂ X, then

Γ−1
A = ΓA .

Corollary 4.3. If A ⊂ X and B ⊂ Y , then for any V ⊂ Y we have

Γ−1
(A, B) [V ] =

{ ∅ if V ⊂ B c ,

A if V 6⊂ B c .

Proof. By Theorems 4.1 and 3.5, we have

Γ−1
(A, B) [V ] = Γ(B, A) [V ] =

{ ∅ if V ⊂ B c ,

A if V 6⊂ B c .

Remark 4.4. Thus, in particular if A ⊂ X, then for any V ⊂ X we have

Γ−1
A [V ] =

{ ∅ if V ⊂ Ac ,

A if V 6⊂ Ac .

Corollary 4.5. If A ⊂ X and B ⊂ Y , then for any y ∈ Y we have

Γ−1
(A, B)(y) =

{
A if y ∈ B ,

∅ if y /∈ B .

Remark 4.6. Thus, in particular if A ⊂ X, then for any y ∈ X we have

Γ−1
A (y) =

{
A if y ∈ A ,

∅ if y /∈ A .

Theorem 4.7. If F is a relation on X to Y , then

F̃ −1 = F −1 ∪ Γ(Y, Dc
F )

Proof. By Definition 3.7 and Theorems 2.4 and 4.1, we have

F̃ −1 =
(
F ∪ Γ(Dc

F , Y )

)−1 = F −1 ∪ Γ−1
(Dc

F , Y ) = F −1 ∪ Γ(Y, Dc
F ) .
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Corollary 4.8. If F is a relation on X to Y , then for any nonvoid subset V of
Y , we have

F̃ −1 [V ] = Dc
F ∪ F −1 [V ] .

Proof. By Theorems 4.7, 1.10 and 3.5, we have

F̃ −1 [V ] =
(
F −1∪ Γ(Y, Dc

F )

)
[V ] = F −1 [V ] ∪ Γ(Y, Dc

F ) [V ] = F −1 [V ] ∪Dc
F .

Therefore, the required equality is also true.

Corollary 4.9. If F is a relation on X to Y , then for any y ∈ Y we have

F̃ −1( y) = Dc
F ∪ F −1( y) .

Theorem 4.10. If A ⊂ X and B ⊂ Y such that A 6= X and B 6= ∅ , then

Γ̃−1
(A, B) = Γ̃(Bc, Ac) .

Proof. Because of B 6= ∅ and Theorem 2.3, we have A = DΓ(A, B) . Therefore, if
y ∈ Y , then by Corollaries 4.9 and 4.5 we have

Γ̃−1
(A, B)(y) = Ac ∪ Γ−1

(A, B)(y) = Ac ∪
{

A if y ∈ B ,

∅ if y /∈ B ,

and hence

Γ̃−1
(A, B)(y) =

{
Ac if y ∈ B c ,

X if y /∈ B c .

Moreover, because of A 6= X and Corollary 3.19, we also have

Γ̃(Bc, Ac)(y) =
{

Ac if y ∈ B c ,

X if y /∈ B c .

Hence, by Corollary 1.4, it is clear that the required equality is also true.

Remark 4.11. Thus, in particular if A is a proper, nonvoid subset of X, then

Γ̃−1
A = Γ̃Ac .

Moreover, by Remark 3.16, we can see that Γ̃∅ = X 2 and Γ̃X = X 2. Therefore,
the above equality is also true for A = ∅ and A = X.

Remark 4.12. However, if X is a set and B is a nonvoid subset of Y , then by
Theorems 3.15 and 4.1 we can see that

Γ̃−1
(X, B) = Γ−1

(X, B) = Γ(B, X) and Γ̃(Bc, X c) = Γ̃(Bc, ∅) = Γ(Y , X) .

Thus, in particular the assumption A 6= X is indispensable in Theorem 4.10.
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Corollary 4.13. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any nonvoid
subset V of Y , we have

Γ̃−1
(A, B) [V ] =

{
Ac if V ⊂ B c ,

X if V 6⊂ B c .

Proof. If in addition A 6= X, then by Theorems 4.10 and 3.17 we have

Γ̃−1
(A, B) [V ] = Γ̃(Bc, Ac) [V ] =

{
Ac if V ⊂ B c ,

X if V 6⊂ B c .

Moreover, by Remark 4.12 and Theorem 3.5, we have

Γ̃−1
(X, B) [V ] = Γ(B, X) [V ] =

{ ∅ if V ⊂ B c ,

X if V 6⊂ B c.

Thus, since ∅ = X c , the required equality is again true.

Remark 4.14. Thus, in particular if A is a nonvoid subset of X, then for any
nonvoid subset V of X we have

Γ̃−1
A [V ] =

{
Ac if V ⊂ Ac ,

X if V 6⊂ Ac .

Moreover, we can easily see the above equality is also true for A = ∅ .

Corollary 4.15. If A ⊂ X and B ⊂ Y such that B 6= ∅ , then for any y ∈ Y
we have

Γ̃−1
(A, B)(y) =

{
X if y ∈ B ,

Ac if y /∈ B .

Remark 4.16. Thus, in particular if A is a nonvoid subset of X, then for any
y ∈ X we have

Γ̃−1
A (y) =

{
X if y ∈ A,

Ac if y /∈ A.

Moreover, we can easily see the above equality is also true for A = ∅ .

Remark 4.17. Note that if A is a proper subset of X and ∅ is considered as a
subset of Y , then by Theorems 3.15 and 4.1 we have

Γ̃−1
(A, ∅)(y) = Γ−1

(X, Y )(y) = Γ(Y , X)(y) = X

and
Γ̃(∅c, Ac)(y) = Γ̃(Y , Ac)(y) = Γ(Y , Ac)(y) = Ac

for all y ∈ Y . Therefore, the assumption B 6= ∅ is indispensable in Corollaries
4.13 and 4.15 and Theorem 4.10.
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5. Compositions of box relations with arbitrary ones

Theorem 5.1. If A ⊂ X and B ⊂ Y , and G is a relation on Y to Z , then

G ◦ Γ(A, B) = Γ(A, G [ B ]) .

Proof. By Theorems 2.7 and 3.3, for any x ∈ X, we have

(
G ◦ Γ(A, B)

)
( x) = G

[
Γ(A, B)(x)

]
=

{
G [B ] if x ∈ A ,

G [ ∅ ] if x /∈ A .

Hence, since G [ ∅ ] = ∅ , by Theorem 3.3 we can see that(
G ◦ Γ(A, B)

)
(x) = Γ(A, G [ B ])( x)

for all x ∈ X. Therefore, by Corollary 1.4, the required equality is also true.

Remark 5.2. Thus, in particular if A ⊂ X and G is a relation on X to Y , then

G ◦ ΓA = Γ(A, G [ A ]) .

Theorem 5.3. If F is a relation on X to Y , and C ⊂ Y and D ⊂ Z , then

Γ(C, D) ◦ F = Γ(F −1[ C ] , D) .

Proof. By Theorems 2.7 and 3.5, for any x ∈ X, we have

(
Γ(C, D) ◦ F

)
( x) = Γ(C, D)

[
F ( x)

]
=

{ ∅ if F (x) ⊂ C c ,

D if F (x) 6⊂ C c .

Moreover, by Theorem 2.2, we have

F (x) 6⊂ C c ⇐⇒ F (x) ∩ C 6= ∅ ⇐⇒ x ∈ F −1[C ] .

Therefore, (
Γ(C, D) ◦ F

)
(x) =

{
D if x ∈ F −1 [C ] ,
∅ if x /∈ F −1 [C ] .

Hence, by Theorem 3.3, we can see that(
Γ(C, D) ◦ F

)
(x) = Γ( F −1[ C ] , D)(x)

for all x ∈ X. Thus, by Corollary 1.4, the required equality is also true.

Remark 5.4. Thus, in particular if F is a relation on X to Y , and B ⊂ Y , then

ΓB ◦ F = Γ( F −1[ B ] , B) .
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Theorem 5.5. If A ⊂ X , B, C ⊂ Y and D ⊂ Z , then

Γ(C, D) ◦ Γ(A, B) =
{ ∅ if B ⊂ C c ,

Γ(A, D) if B 6⊂ C c .

Proof. By Theorem 5.1, we have

Γ(C, D) ◦ Γ(A, B) = Γ(A, Γ(C, D) [ B ] ) .

Moreover, by Theorem 3.5, we have

Γ(C, D) [B ] =
{ ∅ if B ⊂ C c ,

D if B 6⊂ C c .

Thus, since Γ(A, ∅) = ∅ , the required equality is also true.

Remark 5.6. Thus, in particular if A , B ⊂ X, then

ΓB ◦ ΓA =
{ ∅ if A ⊂ B c ,

Γ(A, B) if A 6⊂ B c .

Hence, since A ⊂ Ac ⇐⇒ A = ∅ , and Γ∅ = ∅ , we can also see that Γ 2
A = ΓA .

6. Composition of box relations with totalization ones

Theorem 6.1. If A ⊂ X and B ⊂ Y and G is a relation on Y to Z , then

G̃ ◦ Γ(A, B) =
{

Γ(A, G [ B ] ) if B ⊂ DG,

Γ(A, Z ) if B 6⊂ DG .

Proof. By Theorem 5.1, we have

G̃ ◦ Γ(A, B) = Γ(A, G̃ [ B ] ) .

Moreover, by Theorem 3.9, we have

G̃ [B ] =
{

G [B ] if B ⊂ DG,

Z if B 6⊂ DG .

Therefore, the required equality is also true.

Remark 6.2. Thus, in particular if A ⊂ X and G is a relation on X to Y , then

G̃ ◦ ΓA =
{

Γ(A, G [ A ] ) if A ⊂ DG,

Γ(A, Y ) if A 6⊂ DG .
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Theorem 6.3. If F is a relation on X to Y and C ⊂ Y and D ⊂ Z such that
C 6= ∅ , then

Γ(C, D) ◦ F̃ = Γ(Dc
F , D) ∪ Γ( F −1 [ C ] , D ) .

Proof. By Theorem 5.3, we have

Γ(C, D) ◦ F̃ = Γ( F̃ −1 [ C ] , D) .

Moreover, since C 6= ∅, by Corollary 4.8 we have

F̃ −1 [C ] = Dc
F ∪ F −1 [C ] .

Therefore,
Γ(C, D) ◦ F̃ = Γ( Dc

F ∪F −1 [ C ] , D ) ,

and thus by [ , Theorem 3.3 ] the required equality is also true.

Remark 6.4. Thus, in particular if F is a relation on X to Y and B is a nonvoid
subset of Y , then

ΓB ◦ F̃ = Γ(Dc
F , B) ∪ Γ( F −1 [ B ] , B ) .

Moreover, we can at once see that the above equality is also true for B = ∅ .

Remark 6.5. However, we can note that

Γ(∅, D) ◦ F̃ = ∅ ◦ F̃ = ∅ and Γ(Dc
F , D) ∪ Γ( F −1 [ ∅ ] , D ) = Γ( Dc

F , D ) .

Therefore, the condition C 6= ∅ is indispensable in Theorem 6.3.

Theorem 6.6. If A ⊂ X , B, C ⊂ Y and D ⊂ Z such that B 6= ∅ and D 6= ∅ ,
then

Γ̃(C, D) ◦ Γ(A,B) =
{

Γ(A, D) if B ⊂ C,

Γ(A, Z ) if B 6⊂ C.

Proof. Because of D 6= ∅ and Theorem 3.3, we have C = DΓ(C,D) . Therefore, by
Theorem 6.1, we have

Γ̃(C, D) ◦ Γ(A, B) =
{

Γ(A, Γ(C , D) [ B ] ) if B ⊂ C,

Γ(A, Z ) if B 6⊂ C.

Moreover, by Theorem 3.4, we have

Γ(C, D) [B ] =
{ ∅ if B ⊂ C c,

D if B 6⊂ C c .

Hence, since ∅ 6= B ⊂ C implies that B 6⊂ C c, it is clear that the required equality
is also true.
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Remark 6.7. Thus, in particular if A and B are nonvoid subsets of X, then

Γ̃B ◦ ΓA =
{

Γ(A, B) if A ⊂ B,

Γ(A, X ) if A 6⊂ B.

Moreover, we can easily see that the above equality is also true whenever A = ∅
or B = ∅ . Namely, for instance by Remarks 3.16 and 5.6 we have

Γ̃∅ ◦ ΓA = ΓX ◦ ΓA =
{ ∅ if A = ∅ ,

Γ(A, X) if A 6= ∅ .

Remark 6.8. However, it is clear that the condition B 6= ∅ cannot be omitted
from Theorem 6.6. Moreover, by using Theorems 3.15 and 5.5, we can see that

Γ̃(C, ∅) ◦ Γ(A,B) = Γ(Y , Z) ◦ Γ(A,B) =
{ ∅ if B = ∅ ,

Γ(A, Z) if B 6= ∅ .

Therefore, the condition D 6= ∅ is also indispensable in Theorem 6.6.

Theorem 6.9. If A ⊂ X , B, C ⊂ Y and D ⊂ Z such that B 6= ∅ and C 6= ∅ ,
then

Γ(C, D) ◦ Γ̃(A, B) =
{

Γ(Ac, D) if B ⊂ C c ,

Γ(X, D) if B 6⊂ C c .

Proof. Because of B 6= ∅ and Theorem 3.3, we have A = DΓ(A,B) . Therefore, by
Theorem 6.3, we have

Γ(C, D) ◦ Γ̃(A,B) = Γ(Ac∪Γ−1
(A,B) [ C ] , D) .

Moreover, by Corollary 4.3, we have

Γ−1
(A, B) [C ] =

{ ∅ if C ⊂ B c ,

A if C 6⊂ B c .

Hence, since C ⊂ B c ⇐⇒ B ⊂ C c , it is clear that the required equality is also
true.

Remark 6.10. Thus, in particular if A and B are nonvoid subsets of X, then

ΓB ◦ Γ̃A =
{

Γ(Ac, B) if A ⊂ B c ,

Γ(X, B) if A 6⊂ B c .

Moreover, we can easily see that the above equality is also true whenever A = ∅
or B = ∅ . Namely, for instance, by Remarks 3.16 and 5.6, we have

ΓB ◦ Γ̃∅ = ΓB ◦ ΓX =
{ ∅ if B = ∅ ,

Γ(X, B) if B 6= ∅ .

Remark 6.11. However, it is clear that the condition C 6= ∅ cannot be omitted
from Theorem 6.9. Moreover, by using Theorems 3.15 and 5.5, we can see that

Γ(C, D) ◦ Γ̃(A, ∅) = Γ(C, D) ◦ Γ(X,Y ) =
{ ∅ if C = ∅ ,

Γ(X, D) if C 6= ∅ .

Therefore, the condition B 6= ∅ is also indispensable in Theorem 6.9.



BOX AND TOTALIZATION RELATIONS 15

7. Compositions of totalization relations with arbitrary ones

Theorem 7.1. If F is a relation on X to Y and G is a relation on Y to Z,
then

G ◦ F̃ = G ◦ F ∪ Γ(Dc
F , G[Y ] ) .

Proof. By Definition 3.7 and Theorems 2.9 and 5.1, we have

G ◦ F̃ = G ◦
(
F ∪ Γ(Dc

F , Y )

)
= G ◦ F ∪ G ◦ Γ(Dc

F , Y ) = G ◦ F ∪ Γ(Dc
F , G[Y ]) .

Theorem 7.2. If F is a relation on X to Y and G is a relation on Y to Z,
then

G̃ ◦ F = G ◦ F ∪ Γ(F−1[Dc
G], Z) .

Proof. By Definition 3.7 and Theorems 2.10 and 5.3, we have

G̃ ◦ F =
(
G ∪ Γ(Dc

G, Z)

)
◦ F = G ◦ F ∪ Γ(Dc

G, Z) ◦ F = G ◦ F ∪ Γ(F−1[Dc
G], Z) .

Theorem 7.3. If F is an arbitrary relation on X to Y and G is a non-total
relation of Y to Z , then

G̃ ◦ F̃ = G ◦ F ∪ Γ(Dc
F , Z ) ∪ Γ( F−1 [ Dc

G ] , Z ) .

Proof. By Theorem 7.2 and 3.9, we have

G̃ ◦ F̃ = G̃ ◦ F ∪ Γ(Dc
F , G̃ [Y ]) = G ◦ F ∪ Γ(F−1 [ Dc

G ], Z) ∪ Γ(Dc
F , Z ) .

Namely, by the hypothesis DG 6= Y , we have Y 6⊂ DG , and thus G̃[Y ] = Z .

Remark 7.4. Note that if F is a relation on X to Y and G is a relation of Y
to Z , then by Definition 3.7 and Theorem 7.1 we only have

G̃ ◦ F̃ = G ◦ F̃ = G ◦ F ∪ Γ(Dc
F , G[Y ] ) .

Thus, since now Γ( F−1 [ Dc
G ] , Z ) = Γ( F−1 [ ∅ ] , Z ) = Γ(∅, Z ) = ∅ , the extra condition

DG 6= Y is not dispensable in Theorem 7.3.

Theorem 7.5. If A ⊂ X and B ⊂ Y such that B 6= ∅ , and G is a relation on
Y to Z , then

G ◦ Γ̃(A, B) = Γ(A, G [ B ]) ∪ Γ(Ac, G [ Y ]) .

Proof. Because of B 6= ∅ and Theorem 3.3, we have A = DΓ(A, B) . Therefore, by
Theorems 7.1 and 5.1, we have

G ◦ Γ̃(A, B) = G ◦ Γ(A, B) ∪ Γ(Ac, G [ Y ]) = Γ(A, G [ B ]) ∪ Γ(Ac, G [ Y ]) .
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Remark 7.6. Thus in particular if A is a nonvoid subset of X and G is a relation
on X to Y , then

G ◦ Γ̃A = Γ(A, G [ A ]) ∪ Γ(Ac, G [ X ]) .

Moreover, by Remarks 3.16 and 5.2 and the corresponding definitions, we can see
that

G ◦ Γ̃∅ = G ◦ ΓX = Γ(X, G [ X ] ) = Γ(∅, G [ ∅ ]) ∪ Γ(∅c, G [ X ])

is also true.

Remark 7.7. However, by Theorems 3.15 and 5.1 and the corresponding defini-
tions, we can see that

G ◦ Γ̃(A, ∅) = G ◦ Γ(X, Y ) = Γ(X, G [ Y ]) .

and
Γ(A, G [ ∅ ]) ∪ Γ(Ac, G [ Y ]) = Γ(Ac, G [ Y ]) .

Therefore, the assumption B 6= ∅ is indispensable in Theorem 7.5.

Theorem 7.8. If F is a relation on X to Y , and moreover C ⊂ Y and D ⊂ Z
such that D 6= ∅ , then

Γ̃(C, D) ◦ F = Γ(F −1[ C ] , D) ∪ Γ(F −1 [ C c ] , Z ) .

Proof. Because of D 6= ∅ and Theorem 3.3, we have C = DΓ(C , D) . Therefore, by
Theorems 7.2 and 5.3, we have

Γ̃(C, D) ◦ F = Γ(C, D) ◦ F ∪ Γ(F −1 [ C c ] , Z ) = Γ(F −1[ C ] , D) ∪ Γ(F −1 [ C c ] , Z ) .

Remark 7.9. Thus, in particular if F is a relation on X to Y and B is a nonvoid
subset of Y , then

Γ̃B ◦ F = Γ(F −1[ B ] , B) ∪ Γ(F −1 [ Bc ] , Y ) .

Moreover, by Remarks 3.16 and 5.4 and the corresponding definitions, we can see
that

Γ̃∅ ◦ F = ΓY ◦ F = Γ(F −1 [ Y ] , Y ) = Γ(F −1[ ∅ ] , ∅) ∪ Γ(F −1 [ ∅c ] , Y )

is also true.

Remark 7.10. However, by Theorems 3.15 and 5.3 and the corresponding defini-
tions, we can see that

Γ̃(C, ∅) ◦ F = Γ(Y , Z) ◦ F = Γ(F −1 [ Y ] , Z ) = Γ(DF , Z )

and
Γ(F −1[ C ] , ∅) ∪ Γ(F −1 [ C c ] , Z ) = Γ(F −1 [ C c ] , Z ) .

Therefore, the assumption D 6= ∅ is indispensable in Theorem 7.8.
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8. Compositions of totalization relations
with totalizations of box relations

Theorem 8.1. If A ⊂ X and B ⊂ Y , and G is a non-total relation on Y to
Z , then

G̃ ◦ Γ̃(A, B) =
{

Γ̃(A, G [ B ] ) if B ⊂ DG ,

Γ(X, Z) if B 6⊂ DG .

Proof. If B 6= ∅ , then by Theorem 3.3 we have A = DΓ(A, B) . Moreover, by
Theorems 7.3, 5.1 and 4.3, we have

G̃ ◦ Γ̃(A, B) = G ◦ Γ(A, B) ∪ Γ(Ac, Z) ∪ Γ(Γ−1
(A, B) [ Dc

G ] , Z )

= Γ(A, G [ B ] ) ∪ Γ(Ac, Z) ∪
{

Γ(∅, Z) if B ⊂ DG ,

Γ(A, Z) if B 6⊂ DG .

Furthermore, if B ⊂ DG , then because of B 6= ∅ , we can note that G [B ] 6= ∅ .
Therefore, by Theorem 3.3, have A = DΓ(A, G [ B ] ) . Hence, by Definition 3.7, we
can see that

Γ(A, G [ B ] ) ∪ Γ(Ac, Z) = Γ̃(A, G [ B ] ) .

Moreover, by the corresponding definitions, we can see that Γ(∅, Z) = ∅ ,

Γ(A, Z) ∪ Γ(Ac, Z ) = Γ(X, Z) and Γ(A, G [ B ] ) ⊂ Γ(X, Z) .

Hence, it is clear that the required equality is also true whenever B 6= ∅ .

Moreover, by Theorems 3.15 and 6.1, we can see that

G̃ ◦ Γ̃(A, ∅) = G̃ ◦ Γ(X, Y ) = Γ(X, Z) = Γ̃(A, ∅) = Γ̃(A, G [ ∅ ] ) .

Therefore, the required equality is also true for B = ∅ .

Remark 8.2. Thus, in particular if A ⊂ X and G is a non-total relation on X
to Y , then

G̃ ◦ Γ̃A =
{

Γ̃(A, G [ A ] ) if A ⊂ DG ,

Γ(X, Y ) if A 6⊂ DG .

Remark 8.3. Note that if A ⊂ X and G is a total relation on Y to Z , then by
Remarks 2.16 and 7.6 we have

G̃ ◦ Γ̃A = G ◦ Γ̃A = Γ(A, G [ A ]) ∪ Γ(Ac, G [ X ])

and

Γ̃(A, G [ A ] ) = Γ(A, G [ A ]) ∪ Γ(Ac, Y = Γ(A, G [ A ]) ∪ Γ(Ac, G [ A ]) ∩ Γ(Ac, G [ X ] c ) ,

whenever ∅ 6= A ⊂ DG . Therefore, the condition that G is non-total is indispens-
able in Remark 8.2 and Theorem 8.1.
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Theorem 8.4. If F is a relation on X to Y , and C ⊂ Y and D ⊂ Z such that
D 6= ∅ and C 6= Y , then

Γ̃(C, D) ◦ F̃ = Γ( F −1 [ C ] , D) ∪ Γ(Dc
F , Z ) ∪ Γ( F −1 [ C c ] , Z ) .

Proof. Because of D 6= ∅ and Theorem 3.3, we have C = DΓ(C , D) . Thus, since
C 6= Y , the relation Γ(C, D) is non-total. Now, by Theorems 7.3 and 5.3, we can
see that

Γ̃(C, D) ◦ F̃ = Γ(C, D) ◦ F ∪ Γ(Dc
F , Z ) ∪ Γ( F −1 [ C c ] , Z )

= Γ( F −1 [ C ] , D) ∪ Γ(Dc
F , Z ) ∪ Γ( F −1 [ C c ] , Z ) .

Remark 8.5. Thus, in particular if F is a relation on X to Y , and B is a proper,
nonvoid subset of Y , then

Γ̃B ◦ F̃ = Γ( F −1 [ B ] , B) ∪ Γ(Dc
F , Y ) ∪ Γ( F −1 [ Bc ] , Y ) .

Moreover, by Remarks 3.16 and 6.4 and the corresponding definitions, we can see
that

Γ̃∅◦F̃ = ΓY ◦F̃ = Γ(Dc
F , Y )∪Γ( F −1 [ Y ] , Y ) = Γ( F −1 [ ∅ ] , ∅)∪Γ(Dc

F , Y )∪Γ( F −1 [ ∅c ] , Y )

and

Γ̃Y ◦ F̃ = ΓY ◦ F̃ = Γ(Dc
F , Y )∪ Γ(F −1[ Y ], Y ) = Γ(Dc

F , Y )∪ Γ(F −1[ Y ], Y )∪ Γ(F −1[ Y c ], Y ).

Therefore, the above equality is also true for B = ∅ and B = Y .

Remark 8.6. However, if F is a relation on X to Y and C is a nonvoid subset
of Y , then by Theorems 3.15 and 6.3 and the corresponding definitions we can see
that

Γ̃(C, ∅) ◦ F̃ = Γ(Y , Z) ◦ F̃ = Γ(Dc
F , ∅) ∪ Γ( F −1 [ C ] , ∅ ) = ∅

and

Γ( F −1 [ C ] , ∅) ∪ Γ(Dc
F , Z ) ∪ Γ( F −1 [ C c ] , Z ) = Γ(Dc

F , Z ) ∪ Γ( F −1 [ C c ] , Z ) .

While, if F is a relation on X to Y , Y 6= ∅ and D ⊂ Z , then by Theorems 3.15
and 6.3 we can see that

Γ̃(Y , D) ◦ F̃ = Γ(Y , D) ◦ F̃ = Γ(Dc
F , D) ∪ Γ( F −1 [ Y ] , D )

and

Γ( F −1 [ Y ] , D) ∪ Γ(Dc
F , Z ) ∪ Γ( F −1 [ Y c ] , Z ) = Γ( F −1 [ Y ] , D) ∪ Γ(Dc

F , Z ) .

Therefore, the conditions D 6= ∅ and C 6= Y are indispensable in Theorem 8.4.
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Theorem 8.7. If A ⊂ X , B , C ⊂ Y and D ⊂ Z such that B 6= ∅ , D 6= ∅ and
C 6= Y , then

Γ̃(C, D) ◦ Γ̃(A, B) =
{

Γ̃(A, D ) if B ⊂ C ,

Γ(X, Z) if B 6⊂ C .

Proof. Because of D 6= ∅ and Theorem 3.3, we have C = DΓ(C , D) . Thus, since
C 6= Y , the relation Γ(C, D) is non-total. Now, by Theorem 8.1, we can see that

Γ̃(C, D) ◦ Γ̃(A, B) =
{

Γ̃(A, Γ(C , D) [ B ] ) if B ⊂ C ,

Γ(X, Z) if B 6⊂ C .

Moreover, by Theorem 3.5, we can see that

Γ(C, D) [B ] =
{ ∅ if B ⊂ C c ,

D if B 6⊂ C c .

Now, since ∅ 6= B ⊂ C implies B 6⊂ C c, it is clear that the required equality is
also true.

Remark 8.8. Thus, in particular if A is a nonvoid and B is a proper, nonvoid
subset of X, then

Γ̃B ◦ Γ̃A =
{

Γ̃(A, B ) if A ⊂ B ,

ΓX if A 6⊂ B .

Moreover, if A , B ⊂ X, then by Remarks 3.16, 6.7 and 6.10, we can see that

Γ̃B ◦ Γ̃∅ = Γ̃B ◦ ΓX =
{

Γ(X, B) if X ⊂ B,

Γ(X, X ) if X 6⊂ B,

and thus

Γ̃B ◦ Γ̃∅ = ΓX =
{

Γ̃(∅, B ) if ∅ ⊂ B ,

ΓX if ∅ 6⊂ B .

On the other hand, by Remarks 3.13 and 6.10, we can see that

Γ̃∅ ◦ Γ̃A = ΓX ◦ Γ̃A =
{

Γ(Ac, X) if A ⊂ X c ,

Γ(X, X) if A 6⊂ X c ,

and thus

Γ̃∅ ◦ Γ̃A = ΓX =
{

Γ̃(A, ∅ ) if A ⊂ ∅ ,

ΓX if A 6⊂ ∅ .

Moreover,

Γ̃X ◦ Γ̃A = ΓX ◦ Γ̃A = ΓX =
{

Γ̃(A, X ) if A ⊂ X ,

ΓX if A 6⊂ X ,

since Γ̃(A, X ) = Γ(A, X ) ∪ Γ̃(Ac, X ) = ΓX even if X = ∅ . Therefore, the required
equality is also true if A = ∅ or B = ∅ or B = X .

Remark 8.9. Thus, in particular if A ⊂ X, then

Γ̃A ◦ Γ̃A = Γ̃A .

Therefore, Γ̃A is transitive. Moreover, by Remark 3.20, we can see that Γ̃A is
reflexive on X. Thus, Γ̃A is actually a preorder relation on X.

In this respect, it is also worth noticing that, by Remark 6.11, we have

Γ̃−1
A = Γ̃Ac .

Therefore, Γ̃A is symmetric if and only if Γ̃A = Γ̃Ac . That is, either A = ∅ or
A = X by [ 17 , Remark 5.30 ] .
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9. Some reduction theorems for compositions
with totalization relations

Theorem 9.1. If F is a relation on X to Y and G is a relation on Y to Z,
then the following assertions are equivalent

(1) G ◦ F̃ = G ◦ F ; (2) X = DF or G = ∅ .

Proof. If x ∈ X, then by Theorems 7.1 and 1.9, we have(
G ◦ F̃

)
(x) =

(
G ◦ F ∪ Γ(Dc

F , G[Y ])

)
(x) =

(
G ◦ F

)
(x) ∪ Γ(Dc

F , G[Y ])(x) .

Moreover, by Theorem 3.3, we have

Γ(Dc
F , G[Y ])(x) =

{ ∅ if x ∈ DF ,

G [Y ] if x /∈ DF .

Thus, since
(
G ◦ F

)
(x) = G [F (x) ] ⊂ G [Y ] , we have(

G ◦ F̃
)
(x) =

{ (
G ◦ F

)
(x) if x ∈ DF

G [Y ] if x /∈ DF .

Hence, by Corollary 1.4, the equivalence of (1) and (2) is quite obvious.
To check the implication (1) =⇒ (2), note that if X 6= DF , then there exists

x ∈ Dc
F . Therefore, if G ◦ F = G ◦ F̃ holds, then⋃

y∈Y

G(y) = G [Y ] =
(
G ◦ F̃ )(x) =

(
G ◦ F

)
(x) = G [F (x)] = G [ ∅ ] = ∅.

Hence, we can already see that G(y) = ∅ = ∅ (y) for y ∈ Y . Thus, by Corollary
1.4, we necessary have G = ∅ .

Remark 9.2. If F and G are as in Theorem 9.1, then for any U ⊂ X we can
also prove that

( G ◦ F̃ ) [U ] =
{

( G ◦ F ) [U ] if U ⊂ DF ,

G [Y ] if U 6⊂ DF .

Theorem 9.3. If F is a relation on X to Y and G is a relation on Y to Z,
then the following assertions are equivalent :

(1) G̃ ◦ F = G ◦ F ; (2) Z = G [F (x) ] for all x ∈ F −1 [Dc
G ] .

Proof. If x ∈ X, then by Theorems 7.2 and 1.9, we have

( G̃ ◦ F )(x) =
(
G ◦ F ∪ Γ(F−1[Dc

G], Z)

)
(x) = ( G ◦ F )(x) ∪ Γ(F−1[Dc

G], Z)(x) .

Moreover, by Theorem 3.3, we have

Γ(F−1[Dc
G], Z)

)
(x) =

{
Z if x ∈ F−1 [Dc

G ] ,
∅ if x /∈ F−1 [Dc

G ] .

Thus, since (G ◦ F )(x) = G [F (x) ] ⊂ Z , we have

( G̃ ◦ F )(x) =
{

Z if x ∈ F−1 [Dc
G ](

G ◦ F
)
(x) if x /∈ F−1 [Dc

G ] .

Hence, by Corollary 1.4, the equivalence of (1) and (2) is quite obvious.
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Remark 9.4. If F and G are as in Theorem 9.3, then for any U ⊂ X we can
also prove that

( G̃ ◦ F ) [ U ] =
{

( G ◦ F ) [ U ] if U ⊂ F−1 [Dc
G ] c ,

Z if U 6⊂ F−1 [Dc
G ]c .

Theorem 9.5. If F is an arbitrary relation on X to Y and G is a non-total
relation on Y to Z , then the following assertions are equivalent :

(1) G̃ ◦ F̃ = G ◦ F ; (2) Z = G [F (x) ] for all x ∈ Dc
F ∪ F −1 [Dc

G ] .

Proof. If x ∈ X, then by Theorems 7.3 and 1.9 we have(
G̃ ◦ F̃

)
(x) =

(
G ◦ F ∪ Γ(D c

F , Z) ∪ Γ(F−1[ Dc
G], Z)

)
(x)

=
(
G ◦ F

)
(x) ∪ Γ(Dc

F , Z )(x) ∪ Γ( F−1[ Dc
G] , Z )(x) .

Moreover, by Theorem 3.3, we have

Γ(Dc
F , Z )(x) =

{ ∅ if x ∈ DF ,

Z if x /∈ DF ,

and

Γ( F−1[ Dc
G] , Z )(x) =

{ ∅ if x /∈ F−1[Dc
G] ,

Z if x ∈ F−1[Dc
G].

Thus, since (G ◦ F )(x) = G [F (x) ] ⊂ Z , we have

( G̃ ◦ F̃ )(x) =
{

(G ◦ F )(x) if x ∈ DF \ F−1[Dc
G] ,

Z if x ∈ Dc
F ∪ F −1 [Dc

G ] .

Hence, by Corollary 1.4, the equivalence of (1) and (2) is quite obvious.

Remark 9.6. If F and G are as in Theorem 9.5, then for any U ⊂ X we can
also prove that

( G̃ ◦ F̃ ) [U ] =
{

( G ◦ F ) [U ] if U ⊂ DF \ F−1[Dc
G] ,

Z if U 6⊂ DF or U 6⊂ F−1[Dc
G] c .

Remark 9.7. Note that if F is an arbitrary relation on X to Y and G is a total
relation on Y to Z , then by Definition 3.7 we have G̃◦F̃ = G◦F̃ . Thus, Theorem
9.1 and Remark 9.2 can be applied.
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