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THE GENERALIZED INFIMAL CONVOLUTION CAN BE

USED TO NATURALLY PROVE SOME DOMINATED

MONOTONE ADDITIVE EXTENSION THEOREMS

Tamás Glavosits and Árpád Száz

Abstract. By using a particular case of the generalized infimal convolution, we

provide an instructive proof for a particular case of a dominated monotone additive
extension theorem of Benno Fuchssteiner.

Introduction

In [ 16 ] , by using a particular case of the infimal convolution [ 29 ]

h(x) = ( f ∗ g )(x) = inf
{
f (u) + g(v) : (u, v) ∈ Df×Dg : x = u+ v

}
,

we have naturally proved the following classical Hahn-Banach theorem [ 7 ] .

Theorem 1. If p is a positively homogeneous subadditive function of a real vector
space X to R and ϕ is linear function of a subspace V of X to R such that ϕ
is dominated by p , then there exists a linear function f of X to R that extends
ϕ and is dominated by p .

Now, by using a particular case of the generalized infimal convolution [ 32 ]

h(x) = ( f ∗ g )(x) = inf
{
f (u) + g(v) : (u, v) ∈ Df×Dg : x ≤ u+ v

}
and its homogenization

h∗(x) = inf
n∈N

n−1h (nx ) ,

we shall naturally prove the following particular case of a dominated monotone
additive extension theorem of Fuchssteiner [ 10 ] .

Theorem 2. If p is an increasing subadditive function of a commutative
preordered group X to R and ϕ is and additive function of a subgroup V of
X to R such that ϕ is dominated by p , then there exists an increasing additive
function f of X to R that extends ϕ and is dominated by p .

This theorem can be used to easily prove the following straightforward genera-
lization of a weakening of a monotone linear extension theorem Bauer, Bonsall and
Namioka [ 19 , p. 24 ] .
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Theorem 3. If ϕ is an increasing additive function of a cofinal subgroup V of
a commutative preordered group X to R , then there exists an increasing additive
function f of X to R that extends ϕ .

A detailed examination of an example of Jameson [ 19 , p. 25 ] will show that
even a strictly increasing linear functional of a non-cofinal subspace of a two dimen-
sional partially ordered vector space need not have an increasing additive extension
to the whole space.

1. Hahn–Banach extensions and the infimal convolution

Notation 1.1. Suppose that X is a commutative preordered group and p is an
increasing subadditive function of X to R such that p(0) = 0 .

Moreover, assume that V is a subgroup of X and ϕ is an additive function of V
to R such that ϕ is dominated by p in the sense that ϕ(v) ≤ p(v) for all v ∈ V .

Remark 1.2. Note that thus the inequality relation in X is only assumed to be
reflexive and transitive. Moreover, to guarantee the compatibility of the addition
and inequality in X, it is enough to assume only that x ≤ y implies x+ z ≤ y+ z
for all z ∈ X.

In this respect it also worth noticing that, by the assumed subadditivity and the
real-valuedness of p , we necessarily have p(0) = p(0 + 0) ≤ p(0) + p(0) , and thus
0 ≤ p(0) . Therefore, to guarantee the equality p(0) = 0 , it is enough to assume
only that p(0) ≤ 0.

Remark 1.3. Note that if x ∈ X such that x ≤ 0 , then p(x) ≤ p(0) = 0 .
Therefore, if in particular p is nonnegative, then we necessarily have p(x) = 0 .

Quite similarly, we can note that if 0 ≤ x , and thus −x ≤ 0 , then 0 = p(0) ≤
p(x) and p(−x ) ≤ p(0) = 0 . Therefore, if in particular p is even, then we
necessarily have p(x) = 0 .

This shows that the increasingness of p is, in general, a rather restrictive prop-
erty. However, note that the equality relation on X is always a compatible partial
order relation on X for which p is increasing.

Moreover, if following [ 28 , Definition 1.9 ] of S. Simons, for any x, y ∈ X, we
define x 4 y if p(x− y) ≤ 0 , then 4 is the largest compatible preorder relation
on X for which p is still increasing.

In connection with our former assumptions on p and ϕ , we can also easily
establish the following counterparts of [ 2 , Lemma 1.7 and Corollary 1.8 ] of B.
Anger and J. Lembcke.

Theorem 1.4. If σ is a subadditive function of X to R , then the following
assertions are equivalent :

(1) σ is increasing and σ (x) ≤ 0 ;

(2) σ (x) ≤ 0 for all x ∈ X with x ≤ 0 ;

(3) σ ≤ ρ for some increasing function ρ of X to R with ρ (0) ≤ 0 .

Proof. If (1) holds, then (3) trivially holds with ρ = σ . While, if (3) holds and
x ∈ X such that x ≤ 0 , then we can at once see that σ(x) ≤ ρ(x) ≤ ρ(0) ≤ 0 .
Therefore, (2) also holds.
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Now, it remains to show only that (2) also implies (1). For this, note that if
x, y ∈ X such that x ≤ y , then x− y ≤ 0 . Hence, if (2) holds, we can infer that
σ (x− y ) ≤ 0 . Now, by the subadditivity of σ , it is clear that

σ(x) = σ (x− y + y ) ≤ σ (x− y ) + σ (y) ≤ 0 + σ (y) = σ(y) .

Therefore, σ is increasing. Moreover, if (2) holds, then because of 0 ≤ 0 we also
have σ (0) ≤ 0 . Therefore, (1) also holds.

From our former assumptions on p and ϕ , by using this theorem, we can
immediately derive

Corollary 1.5. ϕ is increasing.

Proof. Note that Theorem 1.4 can be applied by taking V in place of X , ϕ in
place of σ and p |V in place of ρ .

Definition 1.6. If U is a subgroup of X such that V ⊂ U , then an additive
function ψ of U to R , that extends ϕ and is dominated by p , will be called a
Hahn-Banach extension of ϕ to U .

Remark 1.7. In the sequel, we shall actually be interested in the Hahn–Banach
extensions f of ϕ to the whole of X. However, to prove the existence of total
Hahn-Banach extesions, we shall need that of some partial ones.

Definition 1.8. For any x ∈ X, we define

Γ(x) =
{
(u, v) ∈ X×V : x ≤ u+ v

}
.

Remark 1.9. Thus, X is the domain of Γ . Namely, if x ∈ X , then because of
x ≤ x = x+ 0 and 0 ∈ V , we have (x, 0) ∈ Γ(x) . Thus, in particular Γ(x) 6= ∅ .

Moreover, it is also worth noticing that Γ is decreasing, N–superhomogeneous
and superadditive in the sense that Γ(y) ⊂ Γ(x) for all x, y ∈ X with x ≤ y ,

nΓ(x) ⊂ Γ(nx ) and Γ(x) + Γ(y) ⊂ Γ(x+ y )

for all n ∈ N and x, y ∈ X. Note that the N–superhomogeneity is a consequence
of the superadditivity.

Definition 1.10. For any x ∈ X, we define

q(x) = ( p ∗ ϕ )(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}
.

Remark 1.11. Note that if x ∈ X, then because of Γ(x) 6= ∅ , we have q(x) 6=
+∞ . In the next section, we shall show that q(x) 6= −∞ also holds.

The function q is a generalized infimal convolution of p and ϕ such that

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ X×V : x ≤ u+ v

}
≤

≤ inf
{
p(u)+ ϕ(v) : (u, v) ∈ X×V : x = u+ v

}
= inf

v∈V

(
p (x− v )+ ϕ(v)

)
for all x ∈ X.

For the origins, generalizations and applications of the infimal convolution, see
[ 21 ] , [ 29 ] and [ 16 ] , [ 32 ] and the references therein.
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Definition 1.12. For any function ρ of X to R and x ∈ X, we define

ρ̌(x) = ρ (−x ) and ρ̂(x) = −ρ (−x ) .

Remark 1.13. Clearly, ρ is even if and only if ρ = ρ̌ , and ρ is odd if and only if
ρ = ρ̂ . Thus, in particular we have ϕ = ϕ̂ .

Moreover, the mapping ρ 7→ ρ̌ is increasing and the mapping ρ 7→ ρ̌ is
decreasing. Furthermore, we have ρ̂ = −ρ̌ , and ˇ̌ρ = ρ and ˆ̂ρ = ρ .

Now, the close relationship that exists between the Hahn–Banach extensions and
the infimal convolution can be nicely clarified by the following

Theorem 1.14. If U is a subgroup of X such that V ⊂ U , and ψ is a Hahn–
Banach extension of ϕ to U , then ψ is increasing and for any u ∈ U we have

q̂ (u) ≤ ψ(u) ≤ q(u) .

Proof. By Corollary 1.5, it is clear that ψ is also increasing. Moreover, if u ∈ U
and (s, t) ∈ Γ(u) , then we can note that s ∈ X and t ∈ V such that u ≤ s+ t .
Hence, we can infer u − t ≤ s , and thus p(u − t) ≤ p(s) . Moreover, since
u− t ∈ U − V ⊂ U − U ⊂ U , we can also easily see that

ψ(u) = ψ(u− t+ t) = ψ(u− t) + ψ(t) ≤ p(u− t) + ϕ(t) ≤ p(s) + ϕ(t) .

Therefore,

ψ(u) ≤ inf
{
p(s) + ϕ(t) : (s, t ) ∈ Γ(u)

}
= q (u) .

Thus, we have proved that ψ ≤ q . Hence, by using Remark 1.13, we can already
see that q̂(u) ≤ ψ̂(u) = ψ(u) also holds.

Remark 1.15. In the next section, we shall show that q ≤ p and q is also in-
creasing and subadditive. Therefore, q is, in general, a better control function for
ψ than p .

Now, as an immediate consequence of Theorem 1.14, we can also state

Corollary 1.16. If ψ is as in Theorem 1.14 and q is odd on U , then q is an
extension of ψ .

Proof. In this case, for any u ∈ U , we have q̂ (u) = q (u) . Therefore, by Theorem
1.14, we also have ψ(u) = q(u) , and thus the required assertion also holds.

Hence, it is clear that in particular we also have

Corollary 1.17. If U is a subgroup of X such that V ⊂ U and q is odd on U ,
then there exists at most one Hahn–Banach extension ψ of ϕ to U .

Definition 1.18. For any function ρ of X to R and x ∈ X, we define

ρ̄(x) = max
{
ρ(x) , ρ̌(x)

}
.
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Remark 1.19. Note that thus ρ̄ is just the smallest even function of X to R
such that ρ ≤ ρ̄. Therefore, ρ is even if and only if ρ = ρ̄ .

Moreover, it is also worth noticing that the mapping ρ 7→ ρ̄ is an algebraic
closure on the partially ordered set RX of all functions of X to R .

Now, from Theorem 1.14, we can also immediately derive the following

Theorem 1.20. If ψ is as in Theorem 1.14, then |ψ | is dominated by q̄ .

Proof. If u ∈ U , then by using Theorem 1.14, we can see that

ψ(u) ≤ q(u) ≤ max
{
q (u) , q̌ (u)

}
= q̄(u)

and
−ψ(u) ≤ −q̂ (u) = q̌ (u) ≤ max

{
q (u) , q̌ (u)

}
= q̄(u) .

Therefore,
|ψ | (u) = |ψ(u) | ≤ q̄(u) ,

and thus the required assertion is also true.

Hence, it is clear that in particular we also have

Corollary 1.21. If ψ is as in Theorem 1.14 and q is even on U , then |ψ | is
also dominated by q .

2. Further inequalities for the function q

Theorem 2.1. q ≤ p .

Proof. If x ∈ X, then by Remark 1.9 we have (x, 0) ∈ Γ(x) . Hence, it is clear
that

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}
≤ p(x) + ϕ(0) = p(x) .

Therefore, the required equality is also true.

Theorem 2.2. q(0) = 0 .

Proof. By Theorem 2.1, we have q(0) ≤ p(0) = 0 . Moreover, from the ϕ = ψ
particular case of Theorem 1.14, we can see that 0 = ϕ(0) ≤ q(0) . Therefore, the
required equality is also true.

Theorem 2.3. q is increasing.

Proof. If x, y ∈ X such that x ≤ y , then by Remark 1.9 we have Γ(y) ⊂ Γ(x) .
Therefore, if (u, v) ∈ Γ(y) , then we also have (u, v) ∈ Γ(x) . Hence, it is clear
that

q(x) = inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(x)

}
≤ p(u) + ϕ(v) ,

and thus
q(x) ≤ inf

{
p(u) + ϕ(v) : (u, v) ∈ Γ(y)

}
= q(y) .

Therefore, the required assertion is true.

The increasingness of q can also be derived from Theorem 1.4, by using Theorem
2.1 and the following



6 T. GLAVOSITS AND Á. SZÁZ

Theorem 2.4. q is subadditive.

Proof. If x, y ∈ X, then

q(x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ Γ(x)

}
and

q(y) = inf
{
p(s) + ϕ(t) : ( s, t) ∈ Γ(y)

}
.

Therefore, for any α , β ∈ R , with

q(x) < α and q(y) < β ,

there exist (u, v ) ∈ Γ(x) and ( s, t) ∈ Γ(y) such that

p(u) + ϕ(v) < α and p(s) + ϕ(t) < β .

Now, by using Remark 1.9, we can see that

(u+ s , v + t ) = (u, v) + (s, t) ∈ Γ(x) + Γ(y) ⊂ Γ (x+ y ) .

Therefore,

q (x+ y ) = inf
{
p(τ ) + ϕ(ω) : ( τ, ω) ∈ Γ(x+ y )

}
≤

≤ p (u+ s) + ϕ ( v + t ) ≤ p(u) + p(s) + ϕ(v) + ϕ(t) < α+ β

Hence, by letting α and β tend to q(x) and q(y) , respectively, we can already
infer that

q (x+ y ) ≤ q(x) + β , and thus q (x+ y ) ≤ q(x) + q(y) .

Theorem 2.5. q is real-valued.

Proof. If x ∈ X, then from Remark 1.11 we know q(x) 6= +∞ . Moreover, by
using Theorems 2.2 and 2.4, we can see that

0 = q(0) = q (x− x ) ≤ q(x) + q (−x ) .

Hence, it is clear that q(x) 6= −∞ also holds. Namely, if q(x) = −∞ were true,
then because of the above inequality and q(−x) 6= +∞ , we would have 0 ≤ −∞ .

Theorem 2.6. q̂ ≤ q .

Proof. Now, if x ∈ X, then from the inequality 0 ≤ q(x) + q (−x ) , we can also
infer that q̂ (x) = −q (−x) ≤ q (x) . Therefore, q̂ ≤ q also holds.

Remark 2.7. Note that for a function ρ of X to R we have ρ̂ ≤ ρ if and only if
ρ is superodd in the sense that −ρ(x) ≤ ρ (−x ) for all x ∈ X .
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Theorem 2.8. For any n ∈ N and x ∈ X, we have

n q̂ (x) ≤ q (nx ) ≤ n q(x) .

Proof. If x ∈ X and n ∈ N such that q (nx ) ≤ n q(x) , then by Theorem 2.4 we
also have

q
(
(n+ 1)x

)
= q (nx+ x ) ≤ q (nx ) + q(x) ≤ n q(x) + q(x) = (n+ 1) q(x) .

Therefore, the second part of the required assertion is true.
Hence, by using Theorem 2.6 and Remark 2.7, we can already infer that

−q (nx ) ≤ q (−nx ) = q
(
n (−x )

)
≤ n q (−x ) ,

and thus
n q̂ (x) = −n q (−x ) ≤ q (nx )

for all n ∈ N and x ∈ X. Therefore, the first part of the required assertion is also
true.

Now, as a useful consequence of Theorems 2.8, 2.2 and 2.5, we can also state

Theorem 2.9. For any x ∈ X and k ∈ Z , with k ≤ 0, we have

k q (x) ≤ q ( k x ) ≤ k q̂ (x) .

Proof. Note that if k < 0 , then by writing −k in place n and −x in place of x
in Theorem 2.8 we get

k q (x) = −k q̂ (−x ) ≤ q ( k x ) ≤ −k q (−x ) = k q̂ (x) .

Moreover, by Theorem 2.2 and 2.5, we also have

q ( 0x ) = q(0) = 0 = 0 q(x) = 0 q̂ (x) .

Finally, we note that now, in addition to Theorem 2.1, we can also state

Theorem 2.10. p̂ ≤ q .

Proof. By Theorem 2.1 we have q ≤ p . Hence, by using Remark 1.13, we can infer
that p̂ ≤ q̂ . Moreover, by Theorem 2.6, we have q̂ ≤ q . Therefore, p̂ ≤ q also
holds.

Now, as an immediate consequence of Theorems 2.1 and 2.10, we can also state

Corollary 2.11. If p is odd, then q = p .

Moreover, analogously to Theorem 1.20, we can also prove the following

Theorem 2.12. | q | ≤ p̄ .

Hence, by Remark 1.19, it is clear that in particular we also have

Corollary 2.13. If p is even, then | q | ≤ p .

Moreover, from Theorems 2.1 and 2.10, we can also immediately derive

Theorem 2.14. p̂ ≤ q̂ ≤ p .

Proof. By Theorem 2.1 and 2.10, we have q ≤ p and p̂ ≤ q . Hence, by using
Remark 1.13, we can infer that p̂ ≤ q̂ and q̂ ≤ ˆ̂p = p .
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3. Further additivity and homogeneity properties of q

In addition to Theorem 2.4, we can also easily prove the following

Theorem 3.1. For any x ∈ X and v ∈ V , we have

q (x+ v ) = q(x) + ϕ(v) .

Proof. If (s, t) ∈ Γ(x+v ) , then s ∈ X and t ∈ V such that x+v ≤ s+t . Hence,
we can infer that t − v ∈ V and x ≤ s + t − v . Therefore, ( s , t − v ) ∈ Γ(x) ,
and thus

q(x) = inf
{
p(τ ) + ϕ(ω) : ( τ , ω ) ∈ Γ(x)

}
≤

≤ p(s) + ϕ ( t− v ) = p(s) + ϕ(t)− ϕ(v) .

Hence, we can infer that

q(x) + ϕ(v) ≤ p(s) + ϕ(t) ,

and thus

q(x) + ϕ(v) ≤ inf
{
p(s) + ϕ(t) : (s, t) ∈ Γ(x+ v )

}
= q (x+ v ) .

Now, we can easily see that

q (x+ v ) = q (x+ v ) + ϕ(0) = q (x+ v ) + ϕ (−v ) + ϕ(v) ≤ q(x) + ϕ(v) ,

and thus the required equality also holds.

From this theorem, by using Theorem 2.2, we can immediately derive

Corollary 3.2. q is an extension of ϕ .

Proof. By Theorems 3.1 and 2.2, for any v ∈ V , we have

q (v) = q ( 0 ) + ϕ (v) = ϕ(v) .

Therefore, the required assertion is true.

Hence, it is clear that in particular we also have

Corollary 3.3. For any x ∈ X and v ∈ V , we have

q (x+ v ) = q(x) + q(v) .

In view of Theorem 2.8, we may naturally introduce the following

Definition 3.4. For any function ρ of X to R , and n ∈ N and x ∈ X, we define

ρn(x) = n−1ρ(nx ) .
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Remark 3.5. Note that thus ρ is n–homogeneous if and only if ρ = ρn . More-
over, for each n ∈ N , the mapping ρ 7→ ρn has several useful properties.

For instance, we can easily see that this mapping is increasing, ρ̂n = ρ̂n , and
ρnm = ( ρn)m for all n, m ∈ Z .

Theorem 3.6. If n, m ∈ N such that n divides m , then qm ≤ qn .

Proof. In this case, we have m = k n for some k ∈ N . Hence, by Theorem 2.8, we
can see that

qm(x) = m−1q(mx) = (k n)−1q( k nx ) ≤ (kn )−1k q(nx) = n−1q(nx) = qn(x)

for all x ∈ X. Therefore, the required inequality is also true.

Corollary 3.7. If ( kn)∞n=1 is a sequence in N such that kn divides kn+1 for all
n ∈ N , then

(
qkn

)∞
n=1

is a decreasing sequence in R X .

Remark 3.8. Important particular cases are when either kn = 2n for all n ∈ N
or kn = n ! for all n ∈ N .

Definition 3.9. For any function ρ of X to R and x ∈ X, we define

ρ∗(x) = inf
n∈N

ρn(x) and ρ#(x) = sup
n∈N

ρn(x) .

Remark 3.10. Note that thus ρ∗ ≤ ρ1 = ρ . Moreover, if σ is an N–superhomo-
geneous function of X to R such that σ ≤ ρ , then for any n ∈ N and x ∈ X, we
have

σ(x) = n−1 n σ(x) ≤ n−1 σ(nx ) ≤ n−1ρ(nx ) = ρn(x) ,

Hence, we can infer that

σ(x) ≤ inf
n∈N

ρn(x) = ρ∗(x) ,

and thus σ ≤ ρ∗ also holds.
Moreover, from the proof of the forthcoming Theorem 4.3, we can see that ρ∗ is

always N–superhomogeneous. Therefore, if ρ∗ is real-valued, then ρ∗ is the largest
N–superhomogeneous function of X to R such that ρ∗ ≤ ρ .

However, it is now more important to note that, by using Theorem 2.8, we can
easily prove the following

Theorem 3.11. q̂ ≤ q∗ ≤ q# ≤ q .

Proof. By Theorem 2.8, for any n ∈ N and x ∈ X, we have

q̂(x) ≤ n−1 q (nx ) = qn(x) and qn(x) = n−1 q (nx ) ≤ q(x) .

Hence, we can already infer that

q̂(x) ≤ inf
n∈N

qn(x) = q∗(x) and q#(x) = sup
n∈N

qn(x) ≤ q(x) .

Therefore, the required equalities are also true.

Now, as an immediate consequence of Theorems 3.11, 2.2 and 2.5, we can also
state
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Corollary 3.12. q∗ and q# are real-valued and q∗(0) = 0 and q#(0) = 0 .

Moreover, from Theorem 3.11, by Remark 1.13, it is clear that we also have

Corollary 3.13. If q is odd then q = q∗ = q# .

However, it is now more important to note that from Theorem 1.14 we can easily
derive the following

Theorem 3.14. If U is a subgroup of X containing V , and ψ is a Hahn–Banach
extension of ϕ to U , then for any u ∈ U we have

q̂∗(u ) ≤ ψ(u) ≤ q∗(u) .

Proof. By Theorem 1.14, for each u ∈ U , we have

q̂(u) ≤ ψ(u) and ψ(u) ≤ q(u) .

Hence, by using the N–homogeneity of ψ , we can infer that

q̂n(u) ≤ ψn(u) = ψ(u) and ψ(u) = ψn(u) ≤ qn(u)

for all n ∈ N . Therefore,

q̂#(u ) = sup
n∈N

q̂n(u) ≤ ψ(u) and ψ(u) ≤ inf
n∈N

qn(u) = q∗(u) .

Moreover, we can note that

q̂#(x) = sup
n∈N

n−1 q̂ (nx ) = sup
n∈N

−n−1 q (−nx ) =

= − inf
n∈N

n−1 q
(
n (−x)

)
= −q∗(−x ) = q̂∗(x) .

for all x ∈ X . Therefore, the required inequalities are also true.

Remark 3.15. In the next section, we shall see that q∗ is also increasing and
subadditive. Therefore, q∗ is, in general, a better control function for ψ than q .

Now, improving Corollaries 1.16 and 1.17, we can also state

Corollary 3.16. If ψ is as in Theorem 3.14 and q∗ is odd on U , then q∗ is an
extension of ψ .

Corollary 3.17. If U is a subgroup of X such that V ⊂ U and q∗ is odd on U ,
then there exists at most one Hahn–Banach extension ψ of ϕ to U .

Moreover, improving Theorem 1.20 and Corollary 1.21, we can also state

Theorem 3.18. If ψ is as in Theorem 3.14, then |ψ | is dominated by q∗.

Corollary 3.19. If ψ is as in Theorem 3.14 and q∗ is even on U , then |ψ | is
also dominated by q∗.
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4. Further important properties of the function q∗

Counterparts of the following basic facts on q∗ are frequently used in connections
with subadditive and convex functions.

Theorem 4.1. q∗ is increasing.

Proof. If x, y ∈ X such that x ≤ y , then for each n ∈ N we have nx ≤ n y .
Hence, by Theorem 2.3, it follows that q (nx ) ≤ q (n y ) , and thus

qn(x) = n−1q (nx ) ≤ n−1q (n y ) = qn(y) .

Therefore,
q∗(x) = inf

k∈N
qk (x) ≤ qn(x) ≤ qn(y) ,

and thus
q∗(x) ≤ inf

n∈N
qn(y) = q∗(y) .

This shows that q∗ is increasing.

The increasingness of q∗ can also be derived from Theorem 1.4, by using the
inequality q∗ ≤ p and the following

Theorem 4.2. q∗ is subadditive.

Proof. If x, y ∈ X, then we can note that

q∗(x) = inf
n∈N

n−1q (nx ) and q∗(y) = inf
m∈N

m−1q (my ) .

Therefore, for any α, β ∈ R , with

q∗(x) < α and q∗(y) < β ,

there exist n, m ∈ N such that

n−1q (nx ) < α and m−1q (my ) < β .

Now, by using Theorems 2.4 and 2.8, we can see that

q
(
nm (x+ y)

)
≤ q (nmx ) + q (nmy ) ≤ mq (nx ) + n q (my ) .

and thus

(nm)−1q
(
nm (x+ y)

)
≤ n−1q (nx ) +m−1q (my ) < α+ β .

Therefore,

q∗(x+ y ) = inf
k∈N

k−1
(
k (x+ y)

)
≤ (nm)−1q

(
nm (x+ y)

)
< α+ β

also holds. Hence, by letting α and β tend to q∗(x) and q∗(y) , respectively, we
can already infer that

q∗(x+ y ) ≤ q?(x) + β , and thus q∗(x+ y ) ≤ q∗(x) + q∗(y) .

Therefore, q∗ is subadditive.
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Theorem 4.3. q∗ is N–homogeneous.

Proof. If x ∈ X and n ∈ N , then we can note that

q∗(nx ) = inf
m∈N

m−1q (nmx ) .

Therefore, for each α ∈ R , with q∗(nx ) < α , there exists m ∈ N such that

m−1q (nmx ) < α , and thus (nm )−1q (nmx ) < n−1α .

Hence, we can infer that

q∗(x) = inf
k∈N

k−1q ( k x ) ≤ (nm )−1q (nmx ) < n−1α .

Now, by letting α tend to q∗(x) , we can already see that

q∗(x) ≤ n−1q∗(nx ) and thus n q∗(x) ≤ q∗(nx ) .

Moreover, by Theorem 4.2, it is clear that q∗(nx ) ≤ n q∗(x) also holds. Therefore,
the corresponding equality is also true, and thus q∗ is N–homogeneous.

Now, as a useful consequence of Theorems 4.2 and 4.3 and Corollary 3.12, we
can also state

Theorem 4.4. For any k ∈ Z and x ∈ X, we have

q̂∗( k x ) ≤ k q∗(x) ≤ q∗( k x ) .

Proof. If x ∈ X, then by Corollary 3.12 we have

0 q∗(x) = 0 = q∗(0) = q∗( 0x ) .

Moreover, by Theorem 4.3, we have k q∗(x) = q∗( k x ) for all k ∈ Z with k > 0 .
Furthermore, from Theorem 4.2, by Corollary 3.12, we can see that q∗ is also

superodd. That is, −q∗(x) ≤ q∗(−x ) for all x ∈ X. Now, by using Theorem 4.3,
we can see that, for any x ∈ X and k ∈ Z , with k < 0 , we also have

k q∗( x) = (−k )
(
−q∗(x)

)
≤ (−k ) q∗(−x ) = q∗

(
(−k )(−x )

)
= q∗( k x ) .

Therefore, k q∗(x) ≤ q∗( k x ) holds for all k ∈ Z and x ∈ X. Hence, by writing
−k in place of k, we can see that −k q∗( x) ≤ q∗(−k x ) , and thus

q̂∗( k x ) = −q∗(−k x ) ≤ k q∗(x)

also holds for all k ∈ Z and x ∈ X.

Remark 4.5. Now, in addition to Theorem 4.3, we can also state that q∗ is
Z–superhomogeneous.

Moreover, by writing −x in place of x in the first statement of Theorem 4.4,
we can see that −q∗( k x ) ≤ k q∗(−x ) also holds for all k ∈ Z and x ∈ X.

However, it is now more important to note that, by the corresponding definitions
and the equality q̂# = q̂∗, we also have the following
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Theorem 4.6. If x ∈ X and y ∈ R such that

q̂∗(x) ≤ y ≤ q∗(x) ,

then for all n ∈ N , we have

q̂ (nx ) ≤ n y ≤ q (nx ) .

Proof. To check the first statement of the theorem, note that by the proof of
Theorem 3.14 we have

sup
n∈N

n−1 q̂ (nx ) = q̂#(x) = q̂∗(x) ≤ y .

Thus, in particular, we also have

n−1 q̂ (nx ) ≤ y , and hence q̂ (nx ) ≤ n y .

for all n ∈ N .

Now, as a useful consequence of Theorems 4.6 and 2.2, we can also state

Theorem 4.7. If x and y are as in Theorem 4.6, then for all k ∈ Z , we have

q̂ ( k x ) ≤ k y ≤ q ( k x ) .

Proof. By Theorem 2.2, we have 0 y = 0 = q(0) = q ( 0x ) . Moreover, by Theorem
4.6, we also have k y ≤ q ( k x ) for all k ∈ Z with k > 0 .

On the other hand, if k ∈ Z such that k < 0 , then by writing −k in place of n
in the first statement of Theorem 4.6 we can see that q̂ (−k x ) ≤ −k y , and thus

k y ≤ −q̂(−k x ) = q ( k x) .

Therefore, we have k y ≤ q ( k x ) for all k ∈ Z . Hence, by writing −k in place of
k, we can see that −k y ≤ q (−k x ) , and thus

q̂( k x ) = −q (−k x ) ≤ k y

also holds for all k ∈ Z .

Finally, we note that by using Theorem 3.6, we can prove the following

Theorem 4.8. If ( kn)∞n=1 is a sequence in N such that for each n ∈ N there
exists m ∈ N such that n divides km , then for any x ∈ X we have

q∗(x) = inf
n∈N

qkn
(x) .

Proof. By the corresponding definitions, it is clear that

q∗(x) = inf
n∈N

qn(x) ≤ inf
n∈N

qkn
(x) .

Moreover, for each α ∈ R , with q∗(x) < α , there exist n ∈ N such that
qn(x) < α . Furthermore, by the hypothesis, there exists m ∈ N such that n
divides km . Hence, by Theorem 3.6, we can see that qkm

(x) ≤ qn(x) . Therefore,
qkm

(x) < α , and thus
inf

n∈N
qkn

(x) < α

also holds. Hence, by letting α tend to q∗(x) , we can already infer that

inf
n∈N

qkn (x) ≤ q∗(x) ,

and thus the required equality is also true.
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Corollary 4.9. For any x ∈ X, we have

q∗(x) = lim
n→∞

qn!(x) .

Proof. By Theorem 4.8, we have

q∗(x) = inf
n∈N

qn!(x) .

Moreover, by Corollary 3.7, the sequence ( qn!(x))∞n=1 is decreasing. Therefore,
we also have

inf
n∈N

qn!(x) = lim
n→∞

qn!(x) .

Thus, the required equality is also true.

Remark 4.10. This corollary allows of an easy derivation of several properties of
q∗ from those of q .

For instance, from Theorem 3.1, by using Corollary 4.9, we can immediately
derive the following

Theorem 4.11. For any x ∈ X and v ∈ V , we have

q∗(x+ v ) = q∗(x) + ϕ(v) .

Hence, by Corollary 3.12, it is clear that in particular we can also state

Corollary 4.12. q∗ is an extension of ϕ .

5. One-step Hahn–Banach extensions of ϕ

Notation 5.1. Suppose that a ∈ X, and define

L =
{
k ∈ Z : k a ∈ V

}
and

U = Z a+ V =
{
k a+ v : k ∈ Z , v ∈ V

}
.

Remark 5.2. Then, it can be easily seen that L is an ideal in Z . Moreover, U
is the smallest subgroup of X such that a ∈ U and V ⊂ U .

Theorem 5.3. If L 6= {0} , then there exists a unique Hahn–Banach extension
ψ of ϕ to U . Moreover, we have

ψ ( k a+ v ) = k l−1ϕ ( l a ) + ϕ(v)

for all k ∈ Z , v ∈ V and l ∈ L with l 6= 0 .

Proof. If ψ an additive extension of ϕ to U , then for any k ∈ Z and v ∈ V we
have

ψ( k a+ v ) = k ψ(a) + ψ(v) = k ψ(a) + ϕ(v) .
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Moreover, by choosing l ∈ L such that l 6= 0 , then we can also note that

l ψ(a) = ψ ( l a ) = ϕ ( l a ) , and thus ψ(a) = l−1ϕ ( l a ) .

Therefore, the unicity part of the theorem is true.
To prove the existence part of the theorem, note that now, because of L 6= {0} ,

there exists l ∈ Z , with l 6= 0 , such that l a ∈ V . Moreover, since −L ⊂ L , we
may assume that l > 0 . Define

b = l−1ϕ ( l a ) .

Then, l b = ϕ ( l a ) . Moreover, for any k ∈ L , we also have

k l b = k ϕ ( l a ) = ϕ ( k l a ) = l ϕ ( k a ) , and thus k b = ϕ ( k a ) .

The latter observation allows us to easily show that, for any k1 , k2 ∈ Z and
v1 , v2 ∈ V ,

k1 a+ v1 = k2 a+ v2 implies k1 b+ ϕ ( v1) = k2 b+ ϕ ( v2) .

Namely, if k1 a+ v1 = k2 a+ v2 holds, then we also have

( k1 − k2) a = −( v1 − v2) ∈ V , and thus k1 − k2 ∈ L .

Hence, we can already infer that

( k1 − k2) b = ϕ
(
( k1 − k2) a

)
= ϕ

(
−( v1 − v2)

)
= −ϕ ( v1 − v2) ,

and thus

k1 b+ ϕ ( v1)−
(
k2 b+ ϕ ( v2)

)
= ( k1 − k2) b+ ϕ ( v1 − v2) = 0 .

Now, we may unambiguously define a function ψ of U to R such that

ψ ( k a+ v ) = k b+ ϕ(v)

for all k ∈ Z and v ∈ V . Hence, it is clear that ψ is an additive extension of ϕ
to U such that ψ(a) = b . Moreover, for any k ∈ Z and v ∈ V , we have

ψ ( k a+ v ) = k b+ ϕ(v) = k l−1ϕ ( l a )+ l−1 l ϕ(v) = l−1
(
ϕ ( k l a )+ ϕ ( l v )

)
=

= l−1ϕ
(
l ( k a+ v )

)
≤ l−1p

(
l ( k a+ v )

)
≤ l−1 l p ( k a+ v ) = p (k a+ v ) .

Therefore, ψ is also dominated by p.

Remark 5.4. By using an extension of Definition 3.4, we can write

ψ ( k a+ v ) = ϕl( k a+ v ) = k ϕl(a) + ϕ(v)

for all k ∈ Z , v ∈ V and l ∈ L with l 6= 0 .
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Theorem 5.5. If L = {0} , then for any b ∈ R with

q̂∗(a) ≤ b ≤ q∗(a) ,

there exists a unique Hahn–Banach extension ψ of ϕ to U such that ψ(a) = b .
Moreover, we have

ψ( k a+ v ) = k b+ ϕ(v)

for all k ∈ Z and v ∈ V .

Proof. If ψ an additive extension of ϕ to U , then as in the proof of Theorem 5.3
we have

ψ( k a+ v ) = k ψ(a) + ϕ(v)

for all k ∈ Z and v ∈ V . Therefore, ψ is uniquely determined by ψ(a) . Moreover,
by Theorem 3.14, we also have

q̂∗(a) ≤ ψ(a) ≤ q∗(a) .

To prove the existence part of the theorem, we first note that now, for any
k1 , k2 ∈ Z and v1 , v2 ∈ V ,

k1 a+ v1 = k2 a+ v2 implies k1 = k2 , v1 = v2 .

Namely, if k1 a+ v1 = k2 a+ v2 holds, then we have

( k1 − k2) a = −( v1 − v2) ∈ V .

Therefore, we can only have k1 − k2 = 0 , and thus also v1 − v2 = 0 .

Now, we may unambiguously define a function ψ of U to R such that

ψ ( k a+ v ) = k b+ ϕ(v)

for all k ∈ Z and v ∈ V . Moreover, we can also note that ψ is an additive
extension of ϕ to U such that ψ(a) = b . Furthermore, by using Theorems 4.7,
3.1 and 2.1, we can easily see that

ψ ( k a+ v ) = k b+ ϕ(v) ≤ q ( k a ) + ϕ(v) = q ( k a+ v ) ≤ p ( k a+ v )

for all k ∈ Z and v ∈ V . Therefore, ψ is also dominated by p .

Remark 5.6. Note that now, by Theorem 1.14, ψ is increasing. Moreover, by
Theorem 3.14, we also have

q̂∗( k a+ v ) ≤ ψ ( k a+ v ) ≤ q∗ ( k a+ v )

for all k ∈ Z and v ∈ V .
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Theorem 5.7. If q∗ is odd at a , then the restriction of q∗ to U is the unique
Hahn-Banach extension of ϕ to U .

Proof. From Theorems 5.3, 4.4 and 5.5, we know that ϕ always has a Hahn-Banach
extension ψ to U . Moreover, by the hypothesis and Remark 5.6, we necessarily
have

q∗(a) = q̂∗(a) ≤ ψ(a) ≤ q∗(a) ,
and thus ψ(a) = q∗(a) . Hence, since

ψ ( k a+ v ) = k ψ(a) + ϕ(v) = k q∗(a) + ϕ(v)

for all k ∈ Z and v ∈ V , it is clear ψ is uniquely determined.
Moreover, by using Corollary 3.12 and Theorem 4.3, we can easily see that

k q∗(a) = q∗( k a )

for all k ∈ Z . Namely, if k < 0 , then by the hypothesis and Theorem 4.3 we also
have

k q∗(a) = (−k )
(
−q∗(a)

)
= (−k ) q∗(−a ) = q∗

(
(−k) (−a )

)
= q∗( k a ) .

Now, by Theorem 4.11, it is clear that

ψ ( k a+ v ) = k q∗(a) + ϕ(v) = q∗( k a ) + ϕ(v) = q∗( k a+ v )

for all k ∈ Z and v ∈ V . Therefore, the required assertion is also true.

Theorem 5.8. If L 6= {0} , then q∗ is odd at a .

Proof. Again, we can note that there exists k ∈ Z , with k > 0 , such that k a ∈ V .
Hence, by using Theorem 4.3 and Corollary 4.12, we can see that

k q∗(a) = q∗( k a ) = ϕ ( k a )

and

k q̂∗(a) = −k q∗(−a ) = −q∗(−k a ) = q̂∗( k a ) = ϕ̂( k a ) = ϕ ( k a ) .

Therefore, k q∗(a) = k q̂∗(a) , and hence q∗(a) = q̂∗(a) . Thus, the required
assertion is also true.

Now, as an immediate consequence of our former results, we can also state

Theorem 5.9. The following assertions are equivalent :

(1) q∗ is odd at a ; (2) q∗ is odd on U ;

(3) there exists a unique Hahn-Banach extension ψ of ϕ to U ;

(4) there exists at most one Hahn-Banach extension ψ of ϕ to U ;

(5) the restriction of q∗ to U is a Hahn-Banach extension of ϕ to U .

Proof. If (1) holds, then by Theorem 5.7 it is clear that the assertions (3), (4)
and (5) also hold. Moreover, we can note that (3) and (4) are equivalent and
(5) =⇒ (2) =⇒ (1).

Therefore, we need only show that (4) also implies (1). For this, note that if (1)
does not hold, then by Theorem 5.8 we have L = {0} . Moreover, by Theorem 4.4,
we have q̂∗(a) < q∗(a) . Thus, there exist b1 , b2 ∈ R such that

q̂∗(a) ≤ b1 < b2 ≤ q∗(a) .

Moreover, by Theorem 5.5, there exist Hanh-Banach extensions ψ1 and ψ2 of ϕ
to U such that ψ1(a) = b1 and ψ2(a) = b2. Therefore, (4) does not also hold.
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6. Total Hahn–Banach extensions of ϕ

Theorem 6.1. There exists a Hahn-Banach extension f of ϕ to X .

Proof. Denote by Ψ the family of all Hahn-Banach-extensions ψ of ϕ . Then, it is
clear Ψ is a nonvoid partially ordered set with the ordinary set inclusion. Namely,
ϕ ∈ Ψ .

Moreover, if Φ is a totally ordered subset of Ψ , then it can be easily seen that
φ = ∪Φ is an upper bound of Φ in Ψ . Thus, by Zorn’s lemma, there exists a
maximal element f of Ψ .

Thus, it remains only to show that the domain Df of f is X . For this, note
that if for some a ∈ X we have a /∈ Df , then by Theorems 5.3, 4.4 and 5.5 there
exists a Hahn-Banach extension ψ of f to the subgroup U = R a+Df . However,
this contradicts the maximality of f .

Remark 6.2. Note that if f is as in the above theorem, then by Theorem 1.14 we
can state that f is increasing. Moreover, by Theorem 3.14, we have

q̂∗ ≤ f ≤ q∗ .

Therefore, if in particular q∗ is odd, then f = q∗ .

Now, as an immediate consequence of our former results, we can also state the
following

Theorem 6.3. The following assertions are equivalent :

(1) q∗ is odd ;

(2) q∗ is a Hahn-Banach extension of ϕ ;

(3) there exists a unique Hahn-Banach extension f of ϕ to X ;

(4) there exists at most one Hahn-Banach extension f of ϕ to X .

Proof. By Remark 6.2, it is clear that (1) implies (4) . Moreover, from Theorem
6.1, we know that there exists a Hahn-Banach extension f of ϕ to X. Therefore,
(4) implies (3) . Moreover, if (1) holds, then by Remark 6.2 we necessarily have
f = q∗ . Therefore, (1) also implies (2).

Now, since the implications (2) =⇒ (1) and (3) =⇒ (4) trivially hold, we need
only show that (4) also implies (1) . For this, note that if (1) does not hold, then
there exists a ∈ X such that q∗ is not odd at a . Then, by the proof of Theorem
5.9, there exist two Hahn-Banach extensions ψ1 and ψ2 of ϕ to U = Z a + V .
Moreover, by Theorem 6.1, we can state that there exist Hahn-Banach extensions
f1 and f2 of ψ1 and ψ2 to X, respectively. Thus, (4) does not also holds. This
proves the required implication.

Remark 6.4. Sections 7 and 11 of [ 23 ] and [ 7 ] , respectively, show that the
question of the uniqueness of the Hahn–Banach extension has also been intensively
studied by several authors. However, the above simple convolutional characteriza-
tion seems to be new.

Next, we show that Theorem 6.1 can be used to prove a straightforward gene-
ralization of a weakening of [ 19 , 1.6.1. Theorem ] of Bauer, Bonsall and Namioka.
For this, we must slightly change our former assumptions.
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Notation 6.5. Suppose that X is a commutative preordered group and V is a
cofinal subgroup of X in the sense that for each x ∈ X there exists v ∈ V such
that x ≤ v .

Moreover, assume that ϕ is an increasing additive function of V to R , and for
any x ∈ X define

p(x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
.

Remark 6.6. Note that our present definition of cofinality is, in general, stronger
than that of Jameson [ 19 , p. 8 ] , but it coincides with the usual one. Of course,
if in particular the nonegativity domain P = {x ∈ X : x ≥ 0 } of X is cofinal
in X in the sense that for each x ∈ X there exists y ∈ P such that x ≤ y , then
the two definitions coincide.

Note that an arbitrary subset Y of X is cofinal in X if and only if X = Y −P .
Thus, in particular P is cofinal in X if and only if X is generated by P in the
sense that X = P − P . Moreover, by [ 19 , 1.1.3 ] , we can also state that P is
cofinal in X if and only if X is direted by its preordering in the sense that for any
x, y ∈ X there exists z ∈ X such that x ≤ z and y ≤ z .

However, it is now more important to note that, by the above definitions, we
also have the following

Theorem 6.7. p is an increasing subadditive function of X to R extending ϕ .

Proof. If x ∈ X, then by the cofinality of V in X there exist z , w ∈ V such that
x ≤ z and −x ≤ w , and thus −w ≤ x . Hence, it is clear that

p(x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
≤ ϕ(z) < +∞ .

Moreover, if v ∈ V such that x ≤ v , then by using that −w ≤ v , −w ∈ V and
ϕ is increasing we can see that ϕ(−w ) ≤ ϕ(v) . Therefore, we also have

−∞ < ϕ (−w ) ≤ inf
{
ϕ(v) : x ≤ v ∈ V

}
= p (x) .

Furthermore, by using quite similar arguments as in the proofs of Theorems 2.3
and 2.4, we can see that p is increasing and subadditive. Moreover, if v ∈ V , then
by using the increasingness of ϕ we can see that ϕ(v) ≤ ϕ(s) for all s ∈ V with
v ≤ s . Therefore,

ϕ(v) = min
{
ϕ(s) : v ≤ s ∈ V

}
= inf

{
ϕ(s) : v ≤ s ∈ V

}
= p (v) .

Remark 6.8. Note that if ρ is an increasing function of X to R such that
ρ(v) ≤ ϕ(v) for all v ∈ V , then

ρ(x) = inf
{
ρ(v) : x ≤ v ∈ V

}
≤ inf

{
ϕ(v) : x ≤ v ∈ V

}
= p(x)

for all x ∈ X. Therefore, p is actually the largest increasing function of X to R
such that p(v) ≤ ϕ(v) for all v ∈ V .

Now, we can readily prove the promised application of Theorem 6.1.
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Theorem 6.9. ϕ can be extended to an increasing additive function f of X to
R .

Proof. By Theorems 6.7 and 6.1, we can state that there exists a Hahn-Banach
extension f of ϕ to X. Thus, by Definition 1.6, f is an additive function of X
to R that extends ϕ and is dominated by p . Moreover, by Theorem 1.14, f is
also increasing. Therefore, the required assertion is also true.

Remark 6.10. In the present particular case, by Theorem 3.14, we can also state
a counterpart of Remark 6.2.

However, now the infimal convolution q = p ∗ ϕ need not actually be used.
Namely, because of the particular choice of p , we have the following

Theorem 6.11. p = q .

Proof. If x ∈ X, then by the corresponding definitions

q (x) = inf
{
p(u) + ϕ(v) : (u, v) ∈ X×V : x ≤ u+ v

}
.

Therefore, for each α ∈ R , with q (x) < α there exist u ∈ X and v ∈ V , with
x ≤ u+ v , such that

p(u) + ϕ(v) < α .

Hence, we can infer that

inf
{
ϕ(s) : u ≤ s ∈ V

}
= p (u) < α− ϕ(v) .

Therefore, there exists s ∈ V , with u ≤ s, such that

ϕ(s) < α− ϕ(v) , and thus ϕ ( s+ v ) = ϕ(s) + ϕ(v) < α .

Hence, since s+ v ∈ V and x ≤ u+ v ≤ s+ v , we can already infer that

p(x) = inf
{
ϕ(t) : x ≤ t ∈ V

}
< α .

Now, by letting α tend to q (x) , we can also state that p(x) ≤ q (x) . Hence, by
Theorem 2.1, it is clear that p(x) = q(x) , and thus p = q also holds.

7. Some very particular illustrating examples

The following example shows that, even in the particular case considered in
Notation 6.5, the homogenization q∗ of q = p ∗ ϕ may differ from q .

Example 7.1. Take X = R , and consider X to be equipped with the usual
addition, multiplication and inequality. Moreover, define V = Z , and ϕ(v) = v
for all v ∈ V . Then, it is clear that X is a totally ordered vector space over R .
Moreover, V is a cofinal subgroup of X and ϕ is a strictly increasing additive
function of V to R .
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Furthermore, we can easily see that

p (x) = inf
{
ϕ(v) : x ≤ v ∈ V

}
=

= inf
{
v : x ≤ v ∈ Z

}
= min

{
v : x ≤ v ∈ Z

}
=

= −max
{
− v : x ≤ v ∈ Z

}
= −max

{
−v : v ∈ Z , −v ≤ −x

}
=

= −max
{
k ∈ Z : k ≤ −x

}
for all x ∈ X . Hence, by using the entire part function defined by

e(x) = [ x ] = max
{
k ∈ Z : k ≤ x

}
for all x ∈ R , we can note that

p(x) = −max
{
k ∈ Z : k ≤ −x

}
= −e (−x ) = ê(x)

for all x ∈ X , and thus p = ê .

Hence, by Theorem 6.7, we can see that ê is an increasing subadditive function
of R to Z such that ê(k) = ϕ(k) = k for all k ∈ Z . Thus, in particular ê is a
retraction of the linearly ordered set R to Z . Moreover, from Theorem 6.11, for
the function q = p ∗ ϕ , we can see that p = q . Hence, by using Corollary 4.9 and
Remark 3.5, we can infer that

q∗(x) = p∗(x) = lim
n→∞

pn!(x) = lim
n→∞

ên!(x) =

= lim
n→∞

ên!(x) = lim
n→∞

−en!(−x) = − lim
n→∞

en!(−x )

for all x ∈ X .

By the definition of the function e , it is clear that e (nx ) ≤ nx < e (nx )+ 1 ,
and thus

en(x) = n−1e (nx ) ≤ x < n−1e (nx ) + n−1 = en(x) + n−1 ,

and thus 0 ≤ x− en(x) < n−1 for all n ∈ N and x ∈ R . Hence, we can see that

x = lim
n→∞

en(x)

for all x ∈ R , and moreover the convergence is uniform. The above useful equality
shows, in particular, that Q is dense in R .

Moreover, we can note that

q∗(x) = − lim
n→∞

en!(−x ) = − lim
n→∞

en(−x ) = −(−x ) = x

for all x ∈ X. Therefore, q 6= q∗. Now, by Theorem 6.3 and Definition 1.6, we can
also state that q∗ is the unique additive function of X to R that extends ϕ and is
dominated by p .
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Remark 7.2. In connection with the above example, note that if f is an additive
function of X to R such that f (1) = ϕ(1) , then by the Q–homogeneity of f we
necessarily have

f (r) = r f (1) = r ϕ(1) = r = q∗(r)

for all r ∈ Q . However, the equality f = q∗ need not be true.
The latter fact can only be proved with the help of the Hamel bases of X [ 20 ,

pp. 78–85 ] . Note that if for instance a =
√

2 , then a ∈ X \ Q . Therefore,
{1 , a } is a linearly independent subset of X as a vector space over Q . Hence,
by using Zorn’s lemma, it can be easily seen that there exists a maximal linearly
independent subset E of X such that {1 , a } ⊂ E . Thus, in particular, for each
x ∈ X, there exists a unique function x̃ of E to Q such that the support

Ex = { e ∈ E : x̃(e) 6= 0 }

of x̃ is finite and
x =

∑
e∈Ex

x̃(e) e .

Now, by taking

σ(1) = 1 , σ(a) = 2 , and σ(e) ∈ R for e ∈ E \ {1 , a } ,

we may naturally define a function ρ of X to R such that

ρ (x) =
∑

e∈Ex

x̃(e)σ(e)

for all x ∈ X. Then, it can be easily seen that ρ is additive. Moreover, we can
note that

ρ(r) = r ρ(1) = r σ(1) = r = q∗(r)

for all r ∈ Q, but
ρ(a) = 2 6=

√
2 = a = q∗(a) .

Thus, in particular ρ is an additive extension of ϕ to X such that ρ 6= q∗ .

The following example, mentioned by Jameson [ 19 , p. 25 ] , shows that even a
strictly increasing linear functional of a non-cofinal subspace of a two dimensional
partially ordered vector space need not have an increasing additive extension to
the whole space. A more complicated three-dimensional example, for the same
purposes, has formerly been offered by Peressini [ 25 , p. 85 ] .

Example 7.3. Take X = R2 , and consider X to be equipped with the the usual
coordinatewise linear operations. Then, X is a vector space over R .

Moreover, consider X to be equipped with the lexicographic ordering. Thus, for
any (x, y), (z, w) ∈ X , we write

(x, y) ≤ (z, w) if either x < z or ( x = z and y ≤ w ) .

Then, it can be easily seen that ≤ is a total ordering on X that is compatible with
addition and multiplication by nonnegative scalars. Thus, X is a totally ordered
vector space.
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Moreover, define

V =
{
(0, y) : y ∈ R

}
and ϕ(0, y ) = y for all y ∈ R .

Then, it is clear that V is a subspace of X and ϕ is a linear function of V to
R . Moreover, we can note that ϕ is strictly increasing, but V is not cofinal in X.
Namely, for instance, we have (0, y) < (1, 0) for all y ∈ R . In this respect, it is
also worth noticing that, for any (x, y) ∈ X, we have

p (x, y ) = inf
{
ϕ(0, z) : (x, y) ≤ (0, z)

}
=

= inf
{
z ∈ R : x < 0 or (x = 0 , y ≤ z )

}
=

=


−∞ if x < 0 ;
y if x = 0 ;

+∞ if 0 < x .

Next, we show that ϕ does not have an increasing additive extension to X. For
this, assume on the contrary that f is such an extension of ϕ to X. Then, in
particular we have

f (x, y) = f
(
(x, 0)+(0, y )

)
= f (x, 0)+f (0, y) = f (x, 0)+ϕ(0, y) = f (x, 0)+y

for all (x, y) ∈ X. Moreover, we can note that the mapping x 7→ f (x, 0) , where
x ∈ R , is also increasing and additive. Thus, by a classical result of the theory of
functional equations [ 1 , Corollary 5 , p. 15 ] , there exists c ∈ R such that

f (x, 0) = c x

for all x ∈ R . Therefore, we actually have

f (x, y) = c x+ y

for all (x, y) ∈ X . However, if this is true, then taking n ∈ N and noticing that
(0, 0 ) < (1, −n) , we can infer that

0 = c 0 + 0 = f (0, 0) ≤ f (1, −n) = c− n .

Hence, it follows that n ≤ c for all n ∈ N. This contradiction proves the required
assertion.

Remark 7.4. Note that if we consider X to be equipped with the more usual
coordinatewise partial ordering instead of the total lexicographic one, then ϕ is
still strictly increasing and V is not cofinal in X. However, for any (x, y) ∈ X,
we have

p (x, y ) = inf
{
ϕ(0, z) : (x, y) ≤ (0, z)

}
=

= inf
{
z ∈ R : x ≤ 0 , y ≤ z

}
=

{
y if x ≤ 0 ;

+∞ if 0 < x .

Moreover, for any c ∈ R , with c ≥ 0 , the function f , defined by f (x, y) = c x+y
for all (x, y) ∈ X, is an increasing linear extension of ϕ to X that is dominated
by p .

The following example is a modification of [ 16 , Example 5.1 ] . For some closely
related examples, which can also be well adjusted to the present setting, see also
[ 14 ] .
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Example 7.5. Suppose now that X = R2 is again equipped with the lexicographic
ordering as in Example 7.3, but we have

V =
{
(x, x) : x ∈ R

}
and ϕ(x, x ) = x for all x ∈ R .

Then, it is clear that V is again a subspace of X and ϕ is again a linear function
of V to R . Moreover, we can note that ϕ is again strictly increasing, but in
contrast to Example 7.3 and Remark 7.4 the subspace V is now cofinal in X.

Furthermore, for any (x, y) ∈ X , we have

p (x, y ) = inf
{
ϕ(z, z) : (x, y) ≤ (z, z)

}
=

= inf
{
z : x < z or (x = z , y ≤ z )

}
= x .

Namely, in each of the above cases we have x ≤ z . Therefore, x ≤ p (x, y) .
Moreover, if z ∈ R such that x < z , then p (x, y) ≤ z . Hence, by letting z tend
to x , we can see that p (x, y) ≤ x also holds.

Now, in addition to Theorem 6.7, we can state that p is an increasing, linear
extension of ϕ . Moreover, by Theorem 6.11, for the function q = p ∗ ϕ , we have
p = q = q∗. Hence, by Theorem 6.11, we can see that p is actually the unique
additive extension of ϕ to X that is dominated by p .

On the other hand, we can also note that if f is an increasing additive extension
of ϕ to R2, then in particular we have

f (x, y) = f
(
(x, 0) + (y, y)− (y, 0)

)
=

= f (x, 0 ) + f (y, y)− f (y, 0) = f (x, 0) + y − f (y, 0)

for all (x, y) ∈ X . Moreover, as in Example 7.1, we can also state that there exists
c ∈ R such that

f (x, 0) = c x

for all x ∈ R . Therefore, we actually have

f (x, y) = c x+ (1− c) y

for all (x, y) ∈ X . Hence, by noticing that (0, 0) < (1, 0) and (0, 0) < (0, 1)
we can infer that

0 = f (0, 0) ≤ f (1, 0) = c and 0 = f (0, 0) ≤ f (0, 1) = 1− c

and thus 0 ≤ c ≤ 1 . Moreover, by taking n ∈ N and noticing that (0, 0 ) <
(1, −n) , we can infer that

0 = f (0, 0) ≤ f (1, −n) = c− (1− c)n .

Hence, it follows that (1− c)n ≤ c for all n ∈ N. Therefore, 1− c = 0 , and thus
c = 1 . Consequently, f = p is the unique increasing additive extension of ϕ to
X.
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Remark 7.6. Note that if we consider in X the more usual coordinatewise partial
ordering instead of the total lexicographic one, then ϕ is still strictly increasing
and V is cofinal in X. However, for any (x, y) ∈ X, we have

p (x, y ) = inf
{
ϕ(z, z) : (x, y) ≤ (z, z)

}
=

= inf
{
z ∈ R : x ≤ z , y ≤ z

}
= max {x, y } .

Moreover, for any c ∈ [ 0, 1 ] , the function f defined by f (x, y) = c x+(1− c) y
for all x, y ∈ R is also an increasing linear extension of ϕ that is dominated by
p .

Acknowledgement. The authors are indebted to Zsolt Páles for providing a proof
for Theorem 4.2.
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31. Á. Száz, A reduction theorem for a generalized infimal convolution, Tech. Rep., Inst. Math.,
Univ. Debrecen 11 (2009), 1–4.
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