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A RELATIONAL REFORMULATION OF THE

PHELPS–CARDWELL LEMMA

Árpád Száz

Abstract. By using some results on translation and superadditive relations, we

give some relational reformulations of the Phelps–Cardwell lemma in terms of open
and closed surroundings.

These reformulations have mainly been suggested by a unifying scheme for conti-
nuities of relations in relator spaces and a projective generation of translation relators

by superadditive relations.

1. Introduction

In 1960, by using the classical Hahn-Banach extension theorem, Phelps [ 9 ]
proved the following lemma which has had some applications in [ 2 ] and
[ 5 , Proposition 8 ] , and also in [ 4 ] which has not been available to the author.

Lemma 1.1. Suppose that E is a real normed linear space and that ε > 0 . Let
U and S∗ denote the closed unit ball of E and the unit sphere of the dual space
E∗, respectively. If f , g ∈ S∗ are such that

f−1(0) ∩ U ⊂ g−1 [−ε/2 , ε/2 ] ,

then either ‖ f − g ‖ ≤ ε or ‖ f + g ‖ ≤ ε .

Remark 1.2. The above inclusion in a detailed form means only that if x ∈ E
such that f (x) = 0 and ‖x ‖ ≤ 1 , then | g(x) | ≤ ε/2 .

In 2006, by using a quite elementary, but rather tricky computation, Cardwell
[ 3 ] proved the following partial generalization of Lemma 1.1.

Lemma 1.3. Let X be a complex Banach space and let ε be such that 0 < ε < 1/2.
Let ϕ , ψ ∈ X ∗, ‖ϕ ‖ = ‖ψ ‖ = 1 . Suppose that for all x ∈ X with ‖x ‖ ≤ 1
and ϕ(x) = 0 , it holds that ‖ψ(x) ‖ ≤ ε . Then there is some complex number α
such that |α | = 1 and ‖ϕ− αψ ‖ ≤ 5 ε .

1991 Mathematics Subject Classification. Primary 46B20 , 47A07 ; Secondary 24E25 , 54E15.
Key words and phrases. Translation and superadditive relations, open and closed surroundings,

Phelps–Cardwell lemma.

The work of the author has been supported by the Hungarian Scientific Research Fund (OTKA)
Grant NK-81402.

Typeset by AMS-TEX

1



2 Á. SZÁZ

Remark 1.4. If in particular ϕ and ψ are real-valued, then by slightly modifying
the proof of Lemma 1.3 one can choose α to be either 1 or −1 . Thus, Lemma 1.1,
with bound ε replaced by (5/2) ε , can also be proved in an elementary way.

In 2007, by modifying the original proof of Phelps, Aron, Cardwell, Garćıa, and
Zalduendo [ 1 ] proved the following improvement of Lemma 1.3.

Lemma 1.5. Let X be a complex Banach space and SX its unit sphere. If f , g :
X → C are linear forms of norm one and ε > 0 such that

SX ∩
{
f (x) = 0

}
⊂ SX ∩

{
| g(x) | ≤ ε

}
,

then ‖ g − α ‖ ≤ 2 ε for some |α | = 1 .

Remark 1.6. Note that if x ∈ X such that 0 6= ‖x ‖ ≤ 1 and f (x) = 0 ,
then by taking u = ‖x ‖−1 x , we have ‖u ‖ = 1 and f (u) = ‖x ‖−1 f (x) =
0 . Therefore, if the condition of Lemma 1.5 holds, then | g(u) | ≤ ε , and thus
| g(x) | =

∣∣ g (
‖x ‖u

) ∣∣ = ‖x ‖ | g(u) | ≤ ε also holds. Hence, since | g(0) | = 0 ≤ ε ,
we can note that the condition of Lemma 1.3 also holds.

Now, by using the closed surroundings B̄r =
{
(x, y) : d(x, y) ≤ r

}
, we shall

prove the following relational reformulation of Lemma 1.5.

Lemma 1.7. Let X be a normed space over C, and assume that ϕ and ψ are
linear functions of X to C such that ‖ϕ ‖ = 1 and ‖ψ ‖ = 1 . Moreover, assume
that r > 0 and s > 0 such that

(1)
(
B̄r ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0) .

Then, there exists α ∈ C , with |α | = 1 , such that

(2) (ϕ− αψ ) ◦ B̄r ⊂ B̄2 rs ◦ (ϕ− αψ ) .

Remark 1.8. We shall show that (1) is equivalent to the inclusions(
Br ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0)

and (
( B̄r \Br ) ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0) .

Moreover, we shall also show that (1) and (2) are equivalent to the inclusions(
ψ ◦

(
B̄r ∩ ϕ−1

))
(0) ⊂ B̄rs(0)

and
B̄r ⊂ (ϕ− αψ )−1◦ B̄2 rs◦ (ϕ− αψ ) .

The relational reformulations of Lemma 1.5 have been mainly suggested by a
unifying scheme for continuities of relations in relator spaces [ 15 , Definition 4.1 ]
and a basic theorem on translation and superadditive relations [ 13 , Theorem 4.8 ]
which allows of a projective generation of translation relators by superadditive
relations.



PHELPS–CARDWELL LEMMA 3

2. A few basic fats on relations

A subset F of a product set X×Y is called a relation on X to Y . If in particular
F ⊂ X 2, then we may simply say that F is a relation on X . Thus, in particular
∆X = {(x, x) : x ∈ X } is a relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets
F (x) = { y ∈ Y : (x, y) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images

of x and A under F , respectively.
Moreover, the sets DF = {x ∈ X : F (x) 6= ∅ } and RF = F [DF ] are called

the domain and range of F , respectively. If in particular DF = X, then we say
that F is a relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f (x) = y in place of f (x) = {y} .

If F is a relation on X to Y , then the values F (x) , where x ∈ X, uniquely
determine F since we have F =

⋃
x∈X {x}×F (x) . Therefore, the inverse relation

F −1 can be defined such that F −1(y) = {x ∈ X : y ∈ F (x) } for all y ∈ Y .
Moreover, if G is a relation on Y to Z, then the composition relation G ◦ F

can be defined such that (G ◦ F )(x) = F
[
G(x)

]
for all x ∈ X . Thus, we also

have (G ◦ F )(A ) = G
[
F (A )

]
for all A ⊂ X .

If d is a nonnegative function of X 2, then for each r > 0 we may naturally
define two relations Bd

r and B̄d
r on X such that

Bd
r (x) =

{
y ∈ X : d(x, y) < r

}
and B̄d

r (x) =
{
y ∈ X : d(x, y) ≤ r

}
for all x ∈ X .

In the distance space X (d) = (X, d) , the r–sized open and closed surroundings
Bd

r and B̄d
r are usually more convenient means, than the open and closed subsets

of X (d) , or even the distance function d itself.
For instance, a function f of one distance space X (d) to another Y (ρ) can be

easily seen to be uniformly continuous if and only if for each ε > 0 there exists a
δ > 0 such that

f ◦Bd
δ ⊂ Bρ

ε ◦ f , or equivalently Bd
δ ⊂ f−1◦ Bρ

ε ◦ f .

To more nicely express this notion and some other more complicated ones,
instead of the relator Rd = {Bd

r : r > 0} , it is necessary to work with the
various refinements and modifications of Rd considered in [ 8 ] .

For instance, if R is a relator (relational system) on X to Y , then the relator

R∧ =
{
U ⊂ X×Y : ∀ x ∈ X : ∃ R ∈ R : R(x) ⊂ U(x)

}
may be naturally called the topological refinement or closure of R .

Thus, a pair (F , G) of relations on one relator space (X, Y )(R) to another
(Z, W )(S ) may be naturally called topologically upper semicontinuous, resp.
topologically mildly continuous if

S∧ ◦ F ⊂
(
G ◦ R∧

)∧
, resp. G−1◦ S∧ ◦ F ⊂ R∧ .
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3. A few basic facts on translation relations

Definition 3.1. A relation R on a groupoid X is called a translation relation if
for any x, y ∈ X we have

x+R(y) ⊂ R(x+ y ) .

Remark 3.2. By using the notation uR v instead of v ∈ R(u) , the above inclu-
sion can be expressed by saying that yRz implies (x+ y)R (x+ z ) for all x ∈ X.
Thus, in particular, the usual inequality relations < and ≤ on R are translation
relations.

Remark 3.3. However, it is now more important to note that if p is a nonnegative
function of a group X and

d (x , y ) = p (−x+ y )

for all x , y ∈ X, then the surroundings Bp
r = B

dp
r and B̄p

r = B̄
dp
r are translation

relations on X.
To check the translation property of Bp

r , note that if x, y ∈ X and z ∈ Bp
r (y) ,

then p (−y + z ) = d ( y , z ) < r , and thus

d (x+ y , x+ z ) = p
(
−(x+ y ) + x+ z

)
= p (−y − x+ x+ z ) = p (−y + z ) < r .

Therefore, x+ z ∈ Bp
r (x+ y ) . Thus, x+Bp

r (y) ⊂ Bp
r (x+ y ) also holds.

The above facts and the following theorem has been first established in [ 13 ] .

Theorem 3.4. If R is a relation on a group X, then the following assertions are
equivalent :

(1) R is a translation relation ;

(2) R (x) = x+ R (0) for all x ∈ X ;

(3) R (x+ y ) = x+ R (y) for all x , y ∈ X ;

(4) R (x+ y ) ⊂ x+ R (y) for all x , y ∈ X .

Proof. For instance, if (4) holds, then

R (x) = R (x+ 0 ) ⊂ x+ R (0) = x+ R (−x+ x ) ⊂ x− x+ R (x) = R (x)

for all x ∈ X. Therefore, (2) also holds.

Remark 3.5. Now, in addition to Remark 3.3, we can also state that

Bp
r (x+ y ) = x + Bp

r (y) and B̄p
r (x+ y ) = x + B̄p

r (y)

for all x, y ∈ X .

Some further basic properties of the above surrounding can also be derived from
the following theorems of [ 13 ] .
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Theorem 3.6. If R is a translation relation on a groupoid X, then for any
A , B ⊂ X we have

A + R [B ] ⊂ R [A+B ] .

Moreover, if in particular X is a group, then the corresponding equality is also true.

Theorem 3.7. If R is a translation relation on a groupoid X, then R−1 is also
a translation relation on X. Moreover, if in particular X is a commutative group,
then for any A ⊂ X we have

R−1 [A ] = −R [−A ] .

Theorem 3.8. If R and S are translation relation on a groupoid X, then S ◦R
is also a translation relation on X. Moreover, if in particular X is a commutative
group, then for any A , B ⊂ X we have

(S ◦R )[A+B ] = R [A ] + S [B ] .

Remark 3.9. In this respect, it is also worth mentioning that the family of all
translation relations on a groupoid is also closed under complementation, and ar-
bitrary unions and intersections.

4. A few basic facts on superadditive relations

Definition 4.1. A relation F on one groupoid X to another Y is called super-
additive if for any x, y ∈ X we have

F (x) + F (y) ⊂ F (x+ y ) .

Remark 4.2. By using the notation uF v instead of v ∈ F (u) , the above inclu-
sion can be expressed by saying that xF z and yF w implies (x + y)F ( z + w ) .
Thus, in particular, the usual inequality relations < and ≤ on R are superadditive
relations.

Remark 4.3. It is clear that a reflexive and superadditive relation R on a grou-
poid X is a translation relation.

Moreover, by [ 16 , Theorem 3.14 ] , a translation relation R on a commutative
group X is superadditive if and only if it is transitive.

Definition 4.4. A relation F on a group X to a groupoid Y with zero is called
quasi-odd if 0 ∈ F (x) + F (−x) for all x ∈ DF .

Remark 4.5. Thus, a reflexive relation R on a group X is quasi-odd. Moreover,
if F is an odd relation on one group X to another Y in the sense that F (−x ) =
−F (x) for all x ∈ X, then F is in particular quasi-odd.

Now, as certain counterparts of Theorem 3.4, we can also prove the following
two theorems.



6 Á. SZÁZ

Theorem 4.6. If F is a quasi-odd and superadditive relation on a group X to a
monoid Y , then

F (x+ y ) = F (x) + F (y)

for all x, y ∈ X with either x ∈ DF or y ∈ DF .

Proof. If x ∈ DF , then 0 ∈ F (x) + F (−x) ⊂ F (0) . Moreover,

F (x+ y) ⊂ F (x) + F (−x) + F (x+ y) ⊂ F (x) + F (y)

for all y ∈ X . The case x ∈ X and y ∈ DF can be treated quite similarly.

Theorem 4.7. If F is a quasi-odd and superadditive relation on one group X to
another Y then there exists a function f on X to Y such that for all x ∈ X we
have

F (x) = f(x) + F (0) and F (x) = F (0) + f (x) .

Proof. Now, for any x ∈ DF , we have 0 ∈ F (x) + F (−x ) . Therefore, there
exist y ∈ F (x) and z ∈ F (−x ) such that 0 = y + z . Hence, we can already
infer that y = −z ∈ −F (−x ) . Therefore, y ∈ F (x) ∩

(
−F (−x )

)
, and thus

F (x) ∩
(
−F (−x )

)
6= ∅ . Hence, by the Axiom of Choice, it is clear that there

exists a function f of DF to Y such that f (x) ∈ F (x) ∩ (−F (−x ) , and thus
f (x) ∈ F (x) and f (x) ∈ −F (−x ) for all x ∈ DF .

Now, if x ∈ DF , then we can see that f (x) + F (0) ⊂ F (x) + F (0) ⊂ F (x) .
Moreover, since −f (x) ∈ F (−x ) , we can also see that

F (x) ⊂ f (x)− f (x) + F (x) ⊂ f (x) + F (−x ) + F (x) ⊂ f (x) + F (0) .

Therefore, F (x) = f(x) + F (0) . Hence, since F (x) = ∅ and f (x) = ∅ if
x ∈ X \ DF , it is clear that the first part of the required assertion is true. The
second part can be proved quite similarly.

Remark 4.8. Note that if F is a relation on one group X to another Y and f
is a selection function of F such that either F or f is odd, then we also have
−f(x) ∈ F (−x ) for all x ∈ DF . Therefore, if in particular F is superadditive,
then by the above argument we also have F (x) = f (x) + F (0) for all x ∈ X.

Various conditions in order that a relation F could have an additive selection
function f have been given by several authors dealing with relational generali-
zations of the Hahn-Banach extension theorems and the Hyers-Ulam stability
theorems. ( For a rapid overview, see the references of [ 12 ] , [ 7 ] and [ 18 ] , [ 19 ] .)

The close relationship between translation and supperadditive relations can also
be clarified by the following generalization of [ 13 , Theorem 4.8 ] .

Theorem 4.9. If F and G are superadditive relations of one groupoid X to
another Y such that G ⊂ F , and S is a translation relation on Y , then
R = G−1◦ S ◦ F is a translation relation on X .

Proof. If x, y ∈ X and z ∈ R (y) , then by the corresponding definitions we also
have

z ∈
(
G−1◦ S ◦ F

)
(y) = G−1

[
S

[
F (y)

]]
.
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Thus, there exists w ∈ S
[
F (y)

]
such that z ∈ G−1(w) , and hence w ∈ G(z) .

Consequently, we also have G (z) ∩ S
[
F (y)

]
6= ∅ . Hence, since G(x) 6= ∅ , it

follows that (
G(x) + G(z)

)
∩

(
G(x) + S

[
F (y)

] )
6= ∅ .

Now, by using that G(x) + G(z) ⊂ G (x+ z ) and

G(x) + S
[
F (y)

]
⊂ F (x) + S

[
F (y)

]
⊂ S

[
F (x) + F (y)

]
⊂ S

[
F (x+ y )

]
,

we can see that
G (x+ z ) ∩ S

[
F (x+ y )

]
6= ∅ .

Thus, there exists ω ∈ S
[
F (x + y )

]
such that ω ∈ G (x + z ) , and hence

x+ z ∈ G−1(ω) . Consequently, we also have

x+ z ∈ G−1
[
S

[
F (x+ y )

] ]
=

(
G−1◦ S ◦ F

)
(x+ y ) = R (x+ y ) .

Therefore, the inclusion x+R (y) ⊂ R (x+ y ) is also true.

Finally, we note that, analogously to the corresponding results of Section 3, the
following theorems can also be proved.

Theorem 4.10. If F is a superadditive relation on one groupoid to another Y ,
then for any A , B ⊂ X we have

F [A ] + F [B ] ⊂ F [A+B ] .

Remark 4.11. If in particular X and Y are groups, and F is in addition quasi-
odd, then the corresponding equality is also true with either A ⊂ DF or B ⊂ DF .

Theorem 4.12. If F is a superadditive relation on one groupoid to another Y ,
then F −1 is a superadditive relation on Y to X.

Theorem 4.13. If F is a superadditive relation on one groupoid to another Y
and G is a superadditive relation on Y to another groupoid Z , then G ◦ F is a
superadditive relation on X to Z.

Remark 4.14. In this respect, it is also worth noticing that if F and G are
superadditive relations on a groupoid X to a commutative semigroup Y , then
their pointwise sum F +G is also a superadditive relation on X to Y .

Thus, in particular if f is an additive function on X to Y and Z is a subsemi-
group of Y , then the relation f + Z , defined such that (f + Z )(x) = f (x) + Z
for all x ∈ X, is an additive relation on X to Y . Note that, by Theorems 3.4 and
4.7, some translation and superadditive relations are of the latter form.

5. A relational reformulation of Lemma 1.5

Now, by using our former results on translation and superadditive relations, we
can prove the following
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Lemma 5.1. Let X be a normed space over C, and assume that ϕ and ψ are
linear functions of X to C such that

‖ϕ ‖ = 1 and ‖ψ ‖ = 1 .

Moreover, assume that r > 0 and s > 0 such that

(1)
(
B̄r ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0) .

Then, there exists α ∈ C , with |α | = 1 , such that

(2) (ϕ− αψ ) ◦ B̄r ⊂ B̄2 rs◦ (ϕ− αψ ) .

Proof. If x ∈ X such that

‖x ‖ = 1 and ϕ(x) = 0 ,

then we also have

‖ r x ‖ = r ‖x ‖ = r and ϕ ( r x ) = r ϕ(x) = 0 .

Hence, we can already infer that

r x ∈ B̄r(0) and r x ∈ ϕ−1(0) ,

and thus

rx ∈ B̄r(0) ∩ ϕ−1(0) =
(
B̄r ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0) = ψ−1

[
B̄rs(0)

]
.

This implies that ψ( r x ) ∈ B̄rs(0) . Therefore,

r |ψ(x) | = | r ψ(x)| = |ψ ( r x ) | ≤ r s , and thus |ψ(x) | ≤ s .

Now, by Lemma 1.5, we can state that here exists α ∈ C , with |α | = 1 , such
that under the notation

f = ϕ− αψ

we have ‖ f ‖ ≤ 2 s . This implies that

| f (x) | ≤ ‖ f ‖ ‖x ‖ ≤ 2 s ‖x ‖
for all x ∈ X . Hence, if in particular

x ∈ B̄r(0) , and thus ‖x ‖ ≤ r ,

we can see that

| f (x) | ≤ 2 rs , and thus f (x) ∈ B̄rs(0) .

Therefore, we also have

x ∈ f−1
[
B̄2 rs(0)

]
= f−1

[
B̄2 rs

(
f (0)

)]
=

= f−1
[ (
B̄2 rs ◦ f

)
(0)

]
=

(
f−1 ◦ B̄2 rs ◦ f

)
(0) .

This proves that
B̄r(0) ⊂

(
f−1 ◦ B̄2 rs ◦ f

)
(0) .

Hence, by using Remark 3.3 and Theorems 3.4 and 4.9, we can already infer that

B̄r(x) = x + B̄r(0) ⊂ x +
(
f−1 ◦ B̄2 rs ◦ f

)
(0) =

=
(
f−1 ◦ B̄2 rs ◦ f

)
(x) = f−1

[ (
B̄2 rs ◦ f

)
(x)

]
,

and thus(
f ◦ B̄r

)
(x) = f

[
B̄r(x)

]
⊂ f

[
f−1

[ (
B̄2 rs ◦ f

)
(x)

] ]
⊂

(
B̄2 rs ◦ f

)
(x)

for all x ∈ X . Therefore, f ◦ B̄r ⊂ B̄2 rs ◦ f , and thus the required inclusion is
also true.
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Remar 5.2. The above proof shows that condition (1) can be weakened by
requiring only that ((

B̄r \Br

)
∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄rs

)
(0)

The forthcoming Proposition 6.1 will shows that the latter inclusion is actually
equivalent to condition (1).

6. Equivalent reformulations of condition (1)

Condition (1) can also be naturally weakened with the help of the following

Proposition 6.1. If ϕ and ψ are continuous and homogeneous functions of one
normed space X to another Y , then for any r > 0 and s > 0 the following
inclusions are equivalent :

(a)
(
Br ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄s

)
(0) ;

(b)
(
B̄r ∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄s

)
(0) ;

(c)
((
B̄r \Br

)
∩ ϕ−1

)
(0) ⊂

(
ψ−1 ◦ B̄s

)
(0) .

Proof. Since B̄r = Br ∪
(
B̄r \ Br

)
, it is clear that (b) implies both (a) and (c)

even if ϕ and ψ are arbitrary relations. Therefore, we need only show that both
(a) and (c) imply (b).

If x ∈
(
B̄r ∩ ϕ−1

)
(0) , then x ∈ B̄r(0) ∩ ϕ−1(0) , and thus

‖x ‖ ≤ r and ϕ(x) = 0 .

Hence, if x 6= 0 , then by taking

u = r ‖x ‖−1 x ,

we can infer that

‖u ‖ = r ‖x ‖−1 ‖x ‖ = r and ϕ(u) = r ‖x ‖−1ϕ(x) = 0 .

This implies that

u ∈
(
B̄r(0)\Br(0)

)
∩ϕ−1(0) =

(
B̄r \Br

)
(0)∩ϕ−1(0) =

((
B̄r \Br

)
∩ ϕ−1

)
(0) .

Therefore, if (c) holds, then we also have

u ∈
(
ψ−1 ◦ B̄s

)
(0) = ψ−1

[
B̄s(0)

]
.

This implies that ψ(u) ∈ B̄s(0) , and thus ‖ψ(u) ‖ ≤ s . Hence, we can infer that

‖ψ(x) ‖ =
∥∥ψ(

r−1 ‖x ‖u
) ∥∥ = r−1 ‖x ‖ ‖ψ(u) ‖ ≤ s ,

and thus ψ(x) ∈ B̄s(0) . Moreover, we can note that ψ(0) = 0 ∈ B̄s(0) also
holds. Therefore,

x ∈ ψ−1
[
B̄s(0)

]
=

(
ψ−1 ◦ B̄s

)
(0)
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even if x = 0 . This shows that (c) implies (b) even if ϕ and ψ are only assumed
to be homogeneous.

On the other hand, if x ∈
(
B̄r ∩ ϕ−1

)
(0) , and thus ‖x ‖ ≤ r and ϕ(x) = 0 ,

then by taking
xn = n (n+ 1 )−1x

for each n ∈ N , we can see that

‖xn‖ = n (n+ 1 )−1‖x ‖ < r and ϕ (xn) = n (n+ 1 )−1ϕ(x) = 0 .

This implies that

xn = Br(0) ∩ ϕ−1(0) =
(
Br ∩ ϕ−1

)
(0) .

Therefore, if (a) holds, then we also have

xn ∈
(
ψ−1 ◦ B̄rs

)
(0) = ψ−1

[
B̄s(0)

]
,

and thus ψ (xn) ∈ B̄s(0) . This implies that ‖ψ(xn ‖ ≤ s . Hence, by using that

lim
n→∞

xn = x , and thus lim
n→∞

ψ(xn) = ψ(x) ,

we can infer already that ‖ψ(x) ‖ ≤ s . Therefore, ψ(x) ∈ B̄s(0) , and thus
x ∈

(
ψ−1 ◦ B̄s

)
(0) also holds. This shows that (a) implies (b) even if ϕ and ψ

are only assumed to be homogeneous and continuous, respectively.

In this respect, it is also worth mentioning that we also have the following

Proposition 6.2. If ϕ is a continuous homogeneous functions of one normed space
X to another Y , then for any r > 0 we have(

B̄r ∩ ϕ−1
)
(0) = (Br ∩ ϕ−1) (0) .

Proof. From the proof of the implication (a) =⇒ (b) we can see that(
B̄r ∩ ϕ−1

)
(0) ⊂ (Br ∩ ϕ−1) (0)

even if ϕ is only assumed to be homogeneous.
Moreover, we can note that ϕ(0) = ϕ−1 [ {0}] is a closed subset of X even if

ϕ is only assumed to be continuous. Thus,(
B̄r ∩ ϕ−1

)
(0) = B̄r(0) ∩ ϕ−1(0)

is also a closed subset of X. Hence, it is clear that

(Br ∩ ϕ−1) (0) ⊂
(
B̄r ∩ ϕ−1

)
(0) =

(
B̄r ∩ ϕ−1

)
(0) ,

and thus the required equality is also true.

Remark 6.3. The latter proposition allows of a shorter proof of the implication
(a) =⇒ (b) in Proposition 6.1.

Namely, if (a) holds, then by noticing that(
ψ−1 ◦ B̄s

)
(0) = ψ−1

[
B̄s(0)

]
is also a closed subset of X, we can at once see that(

B̄r ∩ ϕ−1
)
(0) = (Br ∩ ϕ−1) (0) ⊂

(
ψ−1 ◦ B̄s

)
(0) =

(
ψ−1 ◦ B̄s

)
(0) ,

and thus (b) also holds.
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7. Equivalent reformulations of inclusions (1) and (2)

Inclusions (1) and (2) can also be reformulated by using the following basic
proposition whose proof is included here only for the reader’s convenience.

Proposition 7.1. If Ψ is a relation on one set to another Y , then

(a) ∆X ⊂ Ψ−1 ◦Ψ if Ψ is total ;

(b) Ψ ◦Ψ−1 ⊂ ∆Y if Ψ is a function .

Proof. If Ψ is total, then for each x ∈ X there exists y ∈ Y such that y ∈ Ψ(x) .
Hence, it is clear that x ∈ Ψ−1(y) , and thus

x ∈ Ψ
[
Ψ−1(x)

]
=

(
Ψ ◦Ψ−1

)
(x) .

Therefore, (x, x) ∈ Ψ ◦Ψ−1. This shows that (a) is true.
On the other hand, if (y, z) ∈ Ψ ◦Ψ−1, then we can note that

z ∈
(
Ψ ◦Ψ−1

)
(y) = Ψ

[
Ψ−1(y)

]
.

Therefore, there exists x ∈ Ψ−1(y) such that z ∈ Ψ(x) . Hence, if Ψ is a function,
we can already infer that y = Ψ(x) = z . Therefore, (b) is also true.

By this proposition, it is clear that in particular we also have the following

Proposition 7.2. If Ψ is a relation on one set X to another Y , then for any
A ⊂ X and B ⊂ Y

(a) Ψ [A ] ⊂ B implies A ⊂ Ψ−1 [B ] if Ψ is total ;

(b) A ⊂ Ψ−1 [B ] implies Ψ [A ] ⊂ B if Ψ is a function .

Proof. If for instance Ψ [A ] ⊂ B and Ψ is total, then Proposition 6.1 we have

A = ∆X [A ] ⊂
(
Ψ−1◦Ψ

)
[A ] = Ψ−1

[
Ψ [A ]

]
⊂ Ψ−1 [B ] .

A simple application of this proposition gives the following

Proposition 7.3. If Ψ is a relation on one set X to another Y , and R and S
are relations on X and Y , respectively, then for any A ⊂ X

(1) ( Ψ ◦R) [A ] ⊂ S [A ] implies R [A ] ⊂
(
Ψ−1◦ S

)
[A ] if Ψ is total ;

(2) R [A ] ⊂
(
Ψ−1 ◦ S

)
[A ] implies ( Ψ ◦ R) [A ] ⊂ S [A ] if Ψ is a

function .

Proof. If for instance (Ψ◦R) [A ] ⊂ S [A ] holds, then we also have Ψ
[
R [A ]

]
⊂

S [A ] . Hence, if Ψ is total, then by using Proposition 7.2 we can infer that

R [A ] ⊂ Ψ−1
[
S [A ]

]
=

(
Ψ−1◦ S

)
[A ] .
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Remark 7.4. By this proposition, it is clear that condition (1) of Lemma 5.1 is
equivalent to the inclusion(

ψ ◦
(
B̄r ∩ ϕ−1

))
(0) ⊂ B̄rs(0) .

Moreover, by using Proposition 7.2, we can also easily establish the following

Proposition 7.5. If F is a relation on one set X to another Y , and R and S
are relations on X and Y , respectively, then for any A ⊂ X

(1) (F ◦R ) [A ] ⊂ (S ◦ F ) [A ] implies R [A ] ⊂
(
F −1◦ S ◦R

)
[A ] if F

is total ;

(2) R [A ] ⊂
(
F −1◦ S ◦R

)
[A ] implies (F ◦R ) [A ] ⊂ (S ◦ F ) [A ] if F

is a function .

Proof. If for instance
(
F ◦ R

)
[A ] ⊂

(
S ◦ F

)
[A ] holds, then we also have

F
[
R [A ]

]
⊂

(
S ◦ F

)
[A ] . Hence, if F is total, then by using Proposition 7.3 we

can infer that

R [A ] ⊂ F −1
[ (
F −1◦ S ◦R

)
[A ]

]
=

(
F −1◦ S ◦R

)
[A ] .

Remark 7.6. By this proposition, it is clear that conclusion (2) of Lemma 5.1 is
equivalent to the inclusion

B̄r ⊂ (ϕ− αψ )−1◦ B̄2 rs◦ (ϕ− αψ ) .
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10. Á. Száz, Projective generation of preseminormed spaces by linear relations, Studia Sci. Math.
Hungar. 23 (1988), 297–313.
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